The Application of the Extended Jiles-Atherton Model for Simulating the Magnetic Characteristics of X30CR13 Steel

Article Preview

Abstract:

The application of magnetic-property oriented methods for non-destructive testing is very promising due to its low cost and robustness. This paper presents the methodology of simulating the magnetic properties of martensitic X30Cr13 steel applying the extended Jiles-Atherton model. On the basis of experimental measurements, the parameters of the Jiles-Atherton model were determined by an evolutionary strategy together with gradient optimisation. A very good agreement between experimental hysteresis loops and the model was confirmed by a high value of determination coefficient. The presented results open new possibilities of developing methods for non-destructive testing of energetic turbines made of X30Cr13 stainless steel. Moreover, quantitative simulation gives a possibility of a better understanding of magnetisation processes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Pages:

725-730

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Katsuyuki, IEEE Trans. Magn. 2 (1998) 2617–2623.

Google Scholar

[2] Y. Gao, Y. Matsuo, K. Muramatsu, IEEE Trans. Magn. 48 (2012) 635–638.

Google Scholar

[3] A.N. Pechenkov, V.E. Shcherbinin, J.G. Smorodinsky, NDT&E International 44 (2011) 716–720.

Google Scholar

[4] X. Mao, Y. Lei, NDT & E International 54 (2013) 69–74.

Google Scholar

[5] M. Song, H. Yoon, H. Yang, C.S. Koh, IEEE Trans. Magn 47 (2011) 1146–1149.

Google Scholar

[6] K. Chwastek, Physica B 403 (2008) 2484–2487.

Google Scholar

[7] H. Liu, Z. Jia, F. Wang, F. Zong, Mechatronics 22 (2012) 911–922.

Google Scholar

[8] M. Hamimid, S.M. Mimoune, M. Feliachi, Physica B 408 (2012) 2438–2441.

Google Scholar

[9] Z.Y. Jia, H.F. Liu, F.J. Wang, C.Y. Ge, Journal of Alloys and Compounds 509 (2011) 1760–1767.

Google Scholar

[10] X. Guo, D. Zhang, J. Zhang, Ultrasonics 52 (2012) 912–919.

Google Scholar

[11] H. Xu, Y. Pei, D. Fang, S. Ai, International Journal of solids and Structures 50 (2013) 672–679.

Google Scholar

[12] S.A. Mousavi, G. Engdahl, IEEE Trans. Magn. 47 (2011) 3040–3043.

Google Scholar

[13] D.C. Jiles, D.L. Atherton, J. Magn. Magn. Mater 61 (1986) 48–60.

Google Scholar

[14] B. Kvasnica, F. Kundracík, Journal of Magnetism and Magnetic Materials 162 (1996) 43–49.

Google Scholar

[15] K. Chwastek, J. Szczyglowski, Math. Comput. Simul. 71 (2006) 206.

Google Scholar

[16] J. Deane, IEEE Trans. Magn. 30 (1994) 2795.

Google Scholar

[17] R. Szewczyk, A. Bieńkowski, J. Magn. Magn. Mater. 254–255 (2003) 284–286.

Google Scholar

[18] R. Szewczyk, Journal of Physics D – Applied Physics 40 (2007) 4109–4113.

Google Scholar

[19] C. Cepis, H. Andrei, V. Dogaru-Ulieru, Journal of Materials Processing Technology 181 (2007) 172–176.

Google Scholar

[20] A. Raghunathan, Y. Melikhov, J.E. Snyder, D.C. Jiles, J. Magn. Magn. Mater. 324 (2012) 20–22.

Google Scholar

[21] P. Andrei, A. Stancu, J. Magn. Magn. Mater. 206 (1999) 160–164.

Google Scholar

[22] K. Chwastek, J. Szczyglowski, M. Najgebauer, Materials Science and Engineering: B 131 (2006) 22–26.

Google Scholar

[23] H. Xu, Y. Pei, D. Fang, S. Ai, International Journal of Solids and Structures 50 (2013) 672–679.

Google Scholar

[24] H.P. Schwefel, Evolution and Optimum Seeking, John Wiley & Sons, USA, (1995).

Google Scholar