X-Ray Tomography in the Diagnostics of Roller Bearing Rings

Article Preview

Abstract:

The article presents the application of computed tomography (CT) for the detection of internal material defects in roller bearing rings made of steel. The tests were conducted using a set of four rings with different defects created artificially by means of electric discharge machining. In each test ring, several defects of the same type could be observed; however, they differed in terms of their size and geometry. The defects analysed had the form of internal blind holes with axes transverse or parallel to the surface of the track of the bearing – internal blind rectangular holes, and through slits in the inner cylindrical surface. The tests were conducted using a “V|tome|x s” X-ray CT scanner (tomograph) by GE. The roentgenograms of test objects were taken and then reconstructed in 3D. Each defect was visualised in different section planes of a reconstructed ring. Selected defects were represented in a solid form, and the measurements were taken in order to determine their geometry and volume. The tests confirmed that CT can be used in studies on such internal material defects in roller bearing rings as subsurface voids. All artificially made model defects were detected.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 223)

Pages:

211-220

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Giesko, A. Mazurkiewicz, A. Zbrowski, Advanced mechatronic system for in-line automated optical inspection of metal parts, International Journal of Simulation: Systems, Science & Technology. 90 (2010) 36 – 41.

Google Scholar

[2] S. Krimmel, J. Stephan, J. Baumann, 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data, Nuclear Instruments and Methods in Physics Research A. 542 (2005).

DOI: 10.1016/j.nima.2005.01.171

Google Scholar

[3] J. Y. Buffiere, E. Maire, J. Adrien, J. P. Masse, E. Boller, In Situ Experiments with X ray Tomography: An Attractive Tool for Experimental Mechanics, Experimental Mechanics. 50 (2010) 289–305.

DOI: 10.1007/s11340-010-9333-7

Google Scholar

[4] W. Ludwig, A. King, P. Reischig, M. Herbig, E. M. Lauridsen, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J.Y. Buffiere, T.J. Marrow, H.F. Poulsen, New opportunities for 3D materials science of polycrystalline materials at the micrometre length scale by combined use of X-ray diffraction and X-ray imaging, Materials Science and Engineering A. 524 (2009).

DOI: 10.1016/j.msea.2009.04.009

Google Scholar

[5] K. Pałka, B. Szaraniec, Analiza mikrostruktury spieków tytanowych z gradientem porowatości przy zastosowaniu rentgenowskiej mikrotomografii komputerowej, Engineering of Biomaterials. 15 (2012) 26-30.

Google Scholar

[6] L. Babout, E. Maire, J. Y. Buffière, R. Fougères, Characterization by x-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites Acta Materialia. 49 (2001) 2055–(2063).

DOI: 10.1016/s1359-6454(01)00104-5

Google Scholar

[7] L. Babout, E. Maire, R. Fougères, Damage initiation in model metallic materials, X-ray tomography and modelling, Acta Materialia. 52 (2004) 2475–2487.

DOI: 10.1016/j.actamat.2004.02.001

Google Scholar

[8] J. Kastner, H. Harrer, P. Degischer, High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys, Materials Characterization. 62 (2011) 99-107.

DOI: 10.1016/j.matchar.2010.11.004

Google Scholar

[9] J. Kastner, B. Harrer, G. Requena, O. Brunke, A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe-and Al-alloys, NDT&E International. 43 (2010) 599-605.

DOI: 10.1016/j.ndteint.2010.06.004

Google Scholar

[10] E. Maire, L. Babout, J.Y. Buffiere, R. Fougères, Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography, Materials Science and Engineering A. 319-321 (2001).

DOI: 10.1016/s0921-5093(01)00924-8

Google Scholar

[11] E. Maire, A. Fazekasb, L. Salvob, R. Dendievelb, S. Youssefa, P. Cloetensc, J.M. Letangd, X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Composites Science and Technology. 63 (2003).

DOI: 10.1016/s0266-3538(03)00276-8

Google Scholar

[12] S. Roux, F. Hild, P. Viot, D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites: Part A. 39 (2008) 1253-1265.

DOI: 10.1016/j.compositesa.2007.11.011

Google Scholar

[13] P. Viot, E. Plougonven, D. Bernard, Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution, Composites Part A. 39 (2008) 1266-1281.

DOI: 10.1016/j.compositesa.2007.11.014

Google Scholar

[14] A. Zbrowski, Tomografia rentgenowska w diagnostyce syntetycznych koszy łożysk tocznych, Energetyka. 2 (2013) 132-139.

Google Scholar

[15] Cs. Kádár, E. Maire, A. Borbély, G. Peix, J. Lendvai, Zs. Rajkovits, X-ray tomography and finite element simulation of the indentation behavior of metal foams, 13th International Conference on the Strength of Materials, Materials Science and Engineering A. (2004).

DOI: 10.1016/j.msea.2004.03.091

Google Scholar

[16] L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J. Y. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research B. 200 (2003).

DOI: 10.1016/s0168-583x(02)01689-0

Google Scholar

[17] H. Toda, T. Ohgaki, K. Uesugi, M. Kobayashi, N. Kuroda, T. Kobayashi, M. Niinomi, T. Akahori, K. Makii, Y. Aruga, Quantitative Assessment of Microstructure and its Effectson Compression Behavior of Aluminum Foams via High-Resolution Synchrotron X-Ray Tomography, Metallurgical and Materials Transactions A. 37A (2006).

DOI: 10.1007/s11661-006-1072-0

Google Scholar

[18] O. Lame, D. Bellet, M. Di. Michiel, D. Bouvard, In situ microtomography investigation of metal powder compacts during sintering, Nuclear Instruments and Methods in Physics Research B. 200 (2003) 287-294.

DOI: 10.1016/s0168-583x(02)01690-7

Google Scholar

[19] S. Burch, Measurement of density variations in compacted parts using X-ray computerized tomography, Metal Powder Report. 57 (2002) 24-28.

DOI: 10.1016/s0026-0657(02)85009-3

Google Scholar

[20] W. Węglewski, K. Bochenek, M. Basista, Th. Schubert, U. Jehring, J. Litniewski, S. Mackiewicz, Comparative assessment of Young's modulus measurements of metal–ceramic composites using mechanical and non-destructive tests and micro-CT based computational modeling, Computational Materials Science. 77 (2013).

DOI: 10.1016/j.commatsci.2013.04.007

Google Scholar

[21] K. Karbowski, Podstawy rekonstrukcji elementów maszyn i innych obiektów w procesach wytwarzania, Wydawnictwo Politechniki Krakowskiej, Cracow, (2008).

Google Scholar

[22] J. Gawlik, J. Sładek J, A. Ryniewicz, M. Kowalski, A. Gąska, Wielofunkcyjna ocena jakości urządzeń technologicznych i wyrobów, Inżynieria Maszyn. 15 (2010) 20-34.

Google Scholar

[23] A. Ryniewicz, Wykorzystanie wzorców do oceny dokładności odwzorowania zarysu w tomografii komputerowej, Pomiary Automatyka Kontrola. 1 (2010) 66-67.

DOI: 10.15199/48.2015.06.17

Google Scholar