The Influence of the Out-of-Plane Constraint on Fracture Toughness of High Strength Steel at Low Temperatures

Article Preview

Abstract:

The values of JIC measured in laboratories, when used in practical applications, may lead to conservative results in assessing the critical state of a structural element. When the thickness of the structural element is less than required by standards the fracture toughness can be much higher than measured in the laboratory. In this paper the fracture toughness of brittle or semi-brittle materials is discussed. The out-of-plane constraint is characterized in this paper by other quantity then the specimen thickness. This quantity can be related to the thickness if the thickness is uniquely defined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 224)

Pages:

157-166

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASTM, E1737-96. Standard Test Method for J-integral Characterization of Fracture Toughness.

Google Scholar

[2] ASTM E1820-09. Standard Test Method for Measurement of Fracture Toughness, Annual book of ASTM standards. V. 03. 01, 1070-1118 (2011).

Google Scholar

[3] ASTM E1921-05. Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range, Annual book of ASTM standards. V. 03. 01, 1128-1147 (2005).

DOI: 10.1520/e1921-22

Google Scholar

[4] F.A. McClintock, A Criterion for Ductile Fracture by Growth of Holes. Journal of Applied Mechanics. 4 (1968) 363–371.

DOI: 10.1115/1.3601204

Google Scholar

[5] J.R. Rice, D.M. Tacey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids. 17 (1969) 201-217.

DOI: 10.1016/0022-5096(69)90033-7

Google Scholar

[6] W. Guo, Elastoplastic three dimensional crack border field - I. Singular structure of the field. Engineering Fracture Mechanics. 46 (1993) 93-104.

DOI: 10.1016/0013-7944(93)90306-d

Google Scholar

[7] A. Neimitz, J. Gałkiewicz, M. Graba, HRR_par program, information on http: /fracture. tu. kielce. pl/index. php?pokaz=hrr.

Google Scholar

[8] A. Neimitz, M. Graba, J. Gałkiewicz, An alternative formulation of the Ritchie-Knott-Rice local fracture criterion, Engineering Fracture Mechanics. 74(8), (2007) 1308-1322.

DOI: 10.1016/j.engfracmech.2006.07.015

Google Scholar

[9] A. Neimitz, J. Gałkiewicz, I. Dzioba, The ductile to cleavage transition in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis, Engineering Fracture Mechanics. 77 (2010) 2504-2526.

DOI: 10.1016/j.engfracmech.2010.06.003

Google Scholar

[10] A. Neimitz, I. Dzioba, U. Janus, Cleavage Fracture of Ultra-High-Strength Steels. Microscopic Observations. Numerical Analysis. Local Fracture Criterion, in Fracture and Fatigue of Materials and Structures, Key Engineering Materials, Trans Tech. Publications. 598 (2014).

DOI: 10.4028/www.scientific.net/kem.598.168

Google Scholar

[11] A. Neimitz, J. Gałkiewicz, Approximation of strain-stress curves in front of a crack in a nonlinear material, International Journal of Fracture. 161 (2010) 227-232.

DOI: 10.1007/s10704-010-9444-2

Google Scholar