Cavitation Erosion and Corrosion of Pearlitic Gray Cast Iron in Non-Standardized Cavitation Conditions

Article Preview

Abstract:

A results of test of erosion and corrosion resistance of pearlitic gray cast iron (grade EN GJ 400) are showed. The NaCl solutions and of ethylene glycol solutions were used as the test environment. Examination were performed at varying cavitation load, in the range 2,8 ÷ 20 W/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 225)

Pages:

19-24

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Standard Test Method for Cavitation Erosion Using Vibratory Apparatus ASTM G32 - 10, Philadelphia, n. d.

Google Scholar

[2] Standard Test Method for Erosion of Solid Materials by a Cavitating Liquid Jet, ASTM G134 - 95(2010), Philadelphia, n. d.

Google Scholar

[3] J. Steller, International cavitation erosion test and quantitative assessment of material resistance to cavitation, in: Wear, Elsevier Sequoia SA, 1999: p.51–64.

DOI: 10.1016/s0043-1648(99)00195-7

Google Scholar

[4] Wade E.H.R., C.M. Preece, Cavitation erosion of iron and steel, Metall. Trans. A. 9A (1978) 1299–1309.

Google Scholar

[5] T. Okada, Y. Iwai, A. Yamamoto, A study of cavitation erosion of cast iron, Wear. 84 (1983) 297–312.

DOI: 10.1016/0043-1648(83)90271-5

Google Scholar

[6] W.J. Tomlinson, M.G. Talks, Erosion and corrosion of cast iron under cavitation conditions, Tribol. Int. 24(2) (1991) 67–75.

DOI: 10.1016/0301-679x(91)90035-8

Google Scholar

[7] S. Hattori, T. Kitagawa, Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data, Wear. 269 (2010) 443 – 448.

DOI: 10.1016/j.wear.2010.04.031

Google Scholar

[8] A. Al-Hashem, A. Abdullah, W. Riad, Cavitation corrosion of nodular cast iron (NCI) in seawater: microstructural effects, Mater. Charact. 47 (2001) 383–388.

DOI: 10.1016/s1044-5803(02)00185-7

Google Scholar

[9] M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidanin, S. Balos, The morphology of ductile cast iron surface damaged by cavitation, Metall. Mater. Eng. 18 (2012) 165–176.

Google Scholar

[10] J. Chmiel, J. Steller, A. Krella, W. Janicki, Badania zużycia korozyjno-kawitacyjnego na stanowisku wibracyjnym ze spoczywająca próbką, Probl. Eksploat. 1 (2010) 91–100.

Google Scholar

[11] J. Chmiel, E. Łunarska, Effect of Cavitation on Absorption and Transport of Hydrogen in Iron, Solid State Phenom. 183 (2012) 25–30.

Google Scholar

[12] Z. Cui, H. Man, F. Cheng, T. Yue, Cavitation erosion–corrosion characteristics of laser surface modified NiTi shape memory alloy, Surf. Coatings Technol. 162 (2003) 147–153.

DOI: 10.1016/s0257-8972(02)00399-7

Google Scholar

[13] C.T. Kwok, F.T. Cheng, H.C. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3 . 5 % NaCl solution, 290 (2000) 145–154.

DOI: 10.1016/s0921-5093(00)00899-6

Google Scholar

[14] A. Al-Hashem, W. Riad, The role of microstructure of nickel–aluminium–bronze alloy on its cavitation corrosion behavior in natural seawater, Mater. Charact. 48 (2002) 37–41.

DOI: 10.1016/s1044-5803(02)00196-1

Google Scholar

[15] J. Chmiel, D. Zasada, Crystallographic conditions for the initiation of cavitation erosion in CuMn11Al11 bronze, 33 (2008) 21–28.

Google Scholar

[16] G.A. Schmitt, W. Buecken, R. Fanebust, Modeling microturbulences at surface imperfections as related to flow-induced localized corrosion, Corrosion. 48 (1992) 431–440.

DOI: 10.5006/1.3315957

Google Scholar

[17] M. Matsumura, An Introduction to Flow Induced Macro-Cell Corrosion, Bentham Books, (2012).

Google Scholar

[18] M. Arora, C. -D. Ohl, K. Mørch, Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator, Phys. Rev. Lett. 92 (2004) 174501.

DOI: 10.1103/physrevlett.92.174501

Google Scholar