Hydrogen Embrittlement of Biodegradable Magnesium

Article Preview

Abstract:

Magnesium alloys are increasingly used in biomedical applications as temporary implants in the human body. The degradation behaviour of magnesium in physiological environments, in combination with the tendency of the corrosion products to be harmlessly dissolved and excreted with the urine, make magnesium very attractive for temporary implant applications. One of these applications is the use of the material for making coronary stents. Such applications are, on the other hand, critically dependent on the mechanical integrity of the implant during service. A number of recent studies have evaluated the in-vivo and in-vitro corrosion behaviour of magnesium and its alloys, and the ongoing research seeks to provide a fundamental understanding of the factors that influence their bio-degradation and environmental failure and to expand this understanding through experimental evidence. In this paper, the propensity of the magnesium alloys AM30 and WE43 to hydrogen embrittlement and to corrosion fatigue was studied using constant extension rate tensile tests on fatigue pre-cracked compact specimens and corrosion fatigue tests on tubes which are typically used for the production of stents and which were tested in simulated body fluid.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 225)

Pages:

71-76

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bobby Kannan, W. Dietzel, R.K. Singh Raman and P. Lyon, Scripta Mat. 57 (2007) 579-581.

DOI: 10.1016/j.scriptamat.2007.06.019

Google Scholar

[2] P.M. Staiger, A.M. Pietak, J. Huadmai and G. Dias, Biomat. 27 (2006) 1728-1734.

Google Scholar

[3] R.C. Zeng, W. Dietzel, F. Witte, N. Hort and C. Blawert, Adv. Biomat. 10 (2008) B3-B14.

DOI: 10.1002/adem.200800035

Google Scholar

[4] R. Willumeit, K.U. Kainer and F. Feyerabend, Acta Biomat. 6 (2010) 1714-1725.

Google Scholar

[5] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit and F. Feyerabend, Curr Opin. Solid State Mat. Sci. 12 (2008) 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[6] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, Biomat., 26 (2005) 3557-3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[7] F. Witte, F. Feyerabend F, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel and N. Hort, Biomat. 28 (2007) 2163-2174.

DOI: 10.1016/j.biomaterials.2006.12.027

Google Scholar

[8] M. Bobby Kannan and R.K. Singh Raman, Biomat. 29 (2008) 2306-2314.

Google Scholar

[9] M. Bobby Kannan and R.K. Singh Raman, Scripta Mat. 59 (2008) 175-78.

Google Scholar

[10] Y. Xin, T. Hu and P.K. Chu, Acta Biomat. 7 (2011) 1452-1459.

Google Scholar

[11] N.E.L. Saris, Clin. Chim. Acta. 294 (2000)1-26.

Google Scholar

[12] F. Witte, H. Ulrich, M. Rudert and E. Willbold, J. Biomed. Mater. Res. A 81 (2007) 748-756.

Google Scholar

[13] F. Witte, H. Ulrich, C. Palm and E. Willbold, J. Biomed. Mater. Res. A 81 (2007) 757-765.

Google Scholar

[14] F.I. Wolf and A. Cittadini, Molecular Aspects of Medicine 24 (2003). 3-9.

Google Scholar

[15] G.L. Song and A. Atrens, Adv. Eng. Mat. 5 (2003) 837–58.

Google Scholar

[16] N. Winzer, A. Atrens, G. Song, E. Ghali,W. Dietzel, K.U. Kainer, N. Hort and C. Blawert, Adv. Eng. Mater. 8 (2005) 659-693.

DOI: 10.1002/adem.200500071

Google Scholar

[17] A. Atrens, N. Winzer, G. Song, W. Dietzel and C. Blawert, Adv. Eng. Mater. 8 (2006) 749-51.

DOI: 10.1002/adem.200600050

Google Scholar

[18] N. Winzer, A. Atrens, W. Dietzel and K.U. Kainer, Metall. Mater. Trans. A 39 (2008) 1157-73.

Google Scholar

[19] W. Dietzel, Metall. Mater. Trans. A 42, 2 (2011) 365-372.

Google Scholar

[20] W. Dietzel and K. -H. Schwalbe, Z. Materialprüfung/Mats. Testing 28, 11 (1986) 368-372.

Google Scholar