[1]
P. Liberski, H. Kania, P. Podolski, The structure and corrosion resistance of Zn-Al coatings obtained in batch double dip process, Physico Chemical Mechanics of Materials 5 (2006) 673-679.
Google Scholar
[2]
J. Mendala, Influence of the cooling method on the structure of 55AlZn coatings, IOP Conf. Series: Materials Science and Engineering 22 (2011) 012004.
DOI: 10.1088/1757-899x/22/1/012004
Google Scholar
[3]
J. Mendala, The influence of Si addition in 55AlZn bath on the coating structures obtained in the batch hot-dip metallization, IOP Conf. Series: Materials Science and Engineering 22 (2011) 012005.
DOI: 10.1088/1757-899x/22/1/012005
Google Scholar
[4]
H. Kania, Trendy vývoje lázní pro žárové zinkování, Konstrukce 6 (2012) 6-15.
Google Scholar
[5]
H. Kania, The structure of coatings obtained in the Zn-31Al-3Mg bath by the batch hot dip method, IOP Conf. Series: Materials Science and Engineering 35 (2012) 012003.
DOI: 10.1088/1757-899x/35/1/012003
Google Scholar
[6]
H. Kania, The Structure of Coatings Obtained in the Zn-31Al-3Mg Bath on High-Silicon Steel, Proc. of XXI Conference on Technologies and Properties of Modern Utility Materials (TPMUM 2013), Solid State Phenomena 212 (2014) 101-106.
DOI: 10.4028/www.scientific.net/ssp.212.101
Google Scholar
[7]
H. Kania, M. Bierońska, Corrosion Resistance of Zn-31AlMg Coatings Obtained by Batch Hot Dip Method, Proc. of XXI Conference on Technologies and Properties of Modern Utility Materials (TPMUM 2013), Solid State Phenomena 212 (2014) 167-172.
DOI: 10.4028/www.scientific.net/ssp.212.167
Google Scholar
[8]
H. Kania, M. Bierońska, Corrosion resistance of coatings obtained in a Zn+23Al bath with Mg additions, Ochrona przed Korozją (Protection from Corrosion) 10 (2014) 445-448.
DOI: 10.15199/40.2015.11.4
Google Scholar
[9]
H. Kania, The structure of coatings obtained in the Zn-7Al-3Mg bath by the batch hot dip method, Physico Chemical Mechanics of Materials 9 (2012) 496-500.
DOI: 10.1088/1757-899x/35/1/012003
Google Scholar
[10]
R. Michalik, Influence of solutioning on structure and mechanical properties of ZnAl22Cu3 alloy, Materials Science and Enginering Technology (Materialwissenschaft und Werkstofftechnik) 45 (5) (2014) 354-360.
Google Scholar
[11]
R. Michalik, Influence of copper on the structure and properties of the ZnAl40Cu3 alloy after heat treatment, Solid State Phenomena 212 (2014) 75-80.
DOI: 10.4028/www.scientific.net/ssp.212.75
Google Scholar
[12]
R. Michalik, The effect of modification with rare earth elements on ZnAl22Cu3 alloy structure and mechanical properties, Archives of Metallurgy and Materials 58 (2013) 49-53.
DOI: 10.2478/v10172-012-0149-6
Google Scholar
[13]
R. Michalik, Influence of environment of acid rain, on the structure of surface layer of ZnAl22Cu3 alloy, Solid State Phenomena 212 (2014) 151-156.
DOI: 10.4028/www.scientific.net/ssp.212.151
Google Scholar
[14]
R. Michalik, Influence of Si and REE on the corrosion resistance of ZnAl40Cu3 Alloy, Solid State Phenomena 212 (2014) 133-136.
DOI: 10.4028/www.scientific.net/ssp.212.133
Google Scholar
[15]
H. Kania, The influence of Si content in steel on the growth kinetics and structure of hot dip Zn-31Al-3Mg coatings, The Book of Abstracts XIV Annual Conference YUCOMAT P.S.B. 19 (2012) 85.
Google Scholar