Influence of the Thermo-Mechanical Treatment on the Properties and Microstructure of High Manganese Austenitic-Ferritic Steel

Article Preview

Abstract:

New generation high-strength austenitic and austenitic-ferritic manganese steels represent a valid potential in applications for components in the automotive and railway industry due to the perfect combination of high mechanical properties and formability. Applying this new steels with their combination of properties allows for reduce the weight of vehicles by the use reduced cross-section components and thus to reduce fuel consumption. The development and implementation of industrial production and the use as construction materials such interesting and promising steel is conditioned to improve their casting properties and susceptibility to deformation during thermomechanical processes conditions. In this work, applied an new high manganese austenitic-ferritic steel for analysis the influence of the cooling medium in thermomechanical processes on the mechanical properties and structure of researched steel. The steel was hot rolled with finish temperature 900°C and next cooled with different conditions. Change the cooling conditions effect on the changes in the microstructure of the tested steel, observed grain refinement of austenite and ferrite morphology change. Also are changing the mechanical characteristics of the tested steel.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 226)

Pages:

75-78

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. S Hamada, Manufacturing, mechanical properties and corrosion behaviour of High-Mn TWIP steels, Universitatis Ouluensis (2007) 1-56.

Google Scholar

[2] B.C. De Cooman, L. Chen, S.H. Kim, Y. Estrin, S.K. Kim, H. Voswinckel, State-of-the-Science of High Manganese TWIP, Steels for Automotive Applications, Chapter 10 1-19.

DOI: 10.1007/978-1-84882-454-6_10

Google Scholar

[3] D. Kuc, E. Hadasik, G. Niewielski, I. Schindler, E. Mazancová, S. Rusz, P. Kawulok, Structural and mechanical properties of laboratory rolled steels high-alloyed with manganese and aluminium, Arch. Civ. Mech. Eng. 12 (2012) 312-317.

DOI: 10.1016/j.acme.2012.06.008

Google Scholar

[4] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt. % Mn-0. 6 wt. % C TWIP steel observed by electron channeling contrast imaging, Science Direct (2011) 6449-6462.

DOI: 10.1016/j.actamat.2011.07.009

Google Scholar

[5] M. Jabłońska, G. Niewielski, R. Kawalla, High Manganese TWIP Steel – Technological Plasticity and Selected Properties, Solid State Phenomena 212 (2014) 87-90.

DOI: 10.4028/www.scientific.net/ssp.212.87

Google Scholar

[6] L. Chen, Y. Zhao, X. Qin, Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review, Springer Science (1996) 1-15.

DOI: 10.1007/s40195-012-0501-x

Google Scholar

[7] W. Bleck, K. Phiuon, Effects of Microalloying in Multi Phase Steels for Car Body Manufacture, 14. Sӓsiche Fachtagung Umformtechnik, Werkstoffe und Komponenten für Fahrzeugen, Freiberg (2007) 38-55.

Google Scholar

[8] W.S. Yang, C.M. Wan, The influence of aluminium content to the stacking fault energy in Fe-Mn-AI-C alloy system, Journal of Materials Science 25 (1990) 1-3.

DOI: 10.1007/bf01045392

Google Scholar

[9] M. Jabłońska, K. Horzelska, D. Kuc, Analiza mikrostruktury i właściwości stali wysokomanganowej X45MnAl20-3 z efektem TWIP kształtowanej w procesie obróbki cieplno-plastycznej (in Polish), Hutnik – Wiadomości Hutnicze 6 (2014) 187-190.

DOI: 10.15199/24.2017.8.27

Google Scholar

[10] M.B. Jabłońska, Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels, Hyperfine Interactions 10751 (2013) 1-7.

DOI: 10.1007/s10751-013-0940-4

Google Scholar

[11] S. Wiewiórowska, The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP effect, Solid State Phenomena 165 (2010) 216-220.

DOI: 10.4028/www.scientific.net/ssp.165.216

Google Scholar