Corrosion Inhibition of Concrete Steel-Reinforcement in Saline/Marine Simulating-Environment by Rhizophora mangle L.

Article Preview

Abstract:

Corrosion inhibition of concrete steel-reinforcement in 3.5% NaCl, simulating saline/marine environment, by the leaf extract of Rhizophora mangle L. was studied in this paper. For this, duplicated specimens of steel-reinforced concrete slabs, admixed with different concentrations of the leaf extract, were immersed in the corrosive test-medium. Analyses, as per ASTM G16-95 R04, of the electrochemical test-results identified 0.0833% Rhizophora mangle L., per weight of cement, with optimal inhibition efficiency η = 95.73±0.15%. The study established a decrease in inhibition effectiveness as concentration of Rhizophora mangle L. increases.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

185-189

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.O. Okeniyi, I.O. Oladele, I.J. Ambrose, S.O. Okpala, O.M. Omoniyi, C.A. Loto and A.P.I. Popoola, J. Cent. South Univ. 20 (2013) 3697–3714.

DOI: 10.1007/s11771-013-1898-8

Google Scholar

[2] T. Pastore, M. Cabrini, L. Coppola, S. Lorenzi, P. Marcassoli and A. Buoso, Mater. Corros. 62 (2011) 187–195.

Google Scholar

[3] M.M. Mennucci, E.P. Banczek, P.R.P. Rodrigues and I. Costa, Cem. Concr. Compos. 31 (2009) 418–424.

Google Scholar

[4] C.T. Tam, H.B. Lim and K. Sisomphon, IES J. Part A: Civ. Struct. Eng. 1 (2008) 146-153.

Google Scholar

[5] J.O. Okeniyi, I.J. Ambrose, I.O. Oladele, C.A. Loto and P.A.I. Popoola, Int. J. Electrochem. Sci. 8 (2013) 10758–10771.

Google Scholar

[6] Z. Yang, H. Fischer and R. Polder, Mater. Corros. 64 (2013) 1–9.

Google Scholar

[7] A. Królikowski, J. Kuziak, Electrochim. Acta 56 (2011) 7845–7853.

Google Scholar

[8] J.O. Okeniyi, O.A. Omotosho, O.O. Ajayi, O.O. James and C.A. Loto, Asian J. Appl. Sci. 5 (2012) 132–143.

Google Scholar

[9] J.P. Liu, C.C. Chen, J.S. Cai, J.Z. Liu and G. Cui, Mater. Corros. 9999 (2012) 1–7.

Google Scholar

[10] J.O. Okeniyi, O.A. Omotosho, O.O. Ajayi and C.A. Loto, Construct. Build. Mater. 50 (2014) 448–456.

Google Scholar

[11] J. –J. Fu, S. –N. Li, L. –H. Cao, Y. Wang, L. –H. Yan and L. –D. Lu, J. Mater. Sci. 45 (2010) 979–986.

Google Scholar

[12] L.M.S. Perera, A. Escobar, C. Souccar, Ma. A. Remigio and B. Mancebo, J. Pharmacogn. Phytother. 2 (2010) 56–63.

Google Scholar

[13] S. Muralidharan, V. Saraswathy, S.P. Merlin Nima and N. Palaniswamy, Mater. Chem. Phy. 86 (2004) 298–306.

Google Scholar

[14] M. Ormellese, M. Berra, F. Bolzoni and T. Pastore, Cem. Concr. Res. 36 (2006) 536–547.

Google Scholar

[15] ASTM G109-99a, ASTM International, West Conshohocken, PA.

Google Scholar

[16] ASTM C192/192M-02, ASTM International, West Conshohocken, PA.

Google Scholar

[17] J.O. Okeniyi, O.M. Omoniyi, S.O. Okpala, C.A. Loto and A.P.I. Popoola, Euro. J. Environ. Civ. Eng. 17 (2013) 398–416.

Google Scholar

[18] D. Izquierdo, C. Alonso, C. Andrad and M. Castellote, Electrochim. Acta 49 (2004) 2731–2739.

Google Scholar

[19] P.R. Roberge, Statistical interpretation of corrosion test results, in: S.D. Cramer, B.S. Covino Jr., (Eds. ), ASM Handbook, Vol 13A – Corrosion: Fundamentals, Testing, and Protection, Materials Park, OH: ASM International, 2003, p.425–429.

DOI: 10.31399/asm.hb.v13a.a0003641

Google Scholar

[20] ASTM G16-95 R04, ASTM International West Conshohocken PA.

Google Scholar

[21] J.O. Okeniyi, U.E. Obiajulu, A.O. Ogunsanwo, N.W. Odiase, and E.T. Okeniyi, Mitig. Adapt. Strateg. Glob. Chang. 18 (2013) 325–335.

DOI: 10.1007/s11027-012-9365-7

Google Scholar

[22] J.O. Okeniyi, E.T. Okeniyi, J. Stat. Comput. Simul. 82 (2012) 1727–1741.

Google Scholar

[23] ASTM C876-91 R99. ASTM International, West Conshohocken, PA.

Google Scholar

[24] T.A. Söylev, M.G. Richardson, Construct. Build. Mater. 22 (2008) 609–622.

Google Scholar

[25] S.G. Millard, D. Law, J.H. Bungey and J. Cairns, NDT&E Int. 34 (2001) 409–417.

Google Scholar