Inhibition of Steel-Rebar Corrosion in Industrial/Microbial Simulating-Environment by Morinda lucida

Article Preview

Abstract:

This paper studies inhibition of steel-rebar corrosion in concrete immersed in 0.5 M H2SO4, simulating industrial/microbial environment by the leaf extract of Morinda lucida. Electrochemical monitoring methods were employed for testing different concentrations of the leaf extract admixed in duplicated specimens of steel-reinforced concrete slabs immersed in the acidic test-system. Statistical analyses as per ASTM G16-95 R04 of the experimental results showed that effectiveness of Morinda lucida at inhibiting concrete steel-rebar corrosion increased with the concentration of the admixture. 0.4167% Morinda lucida, per weight of cement, was identified with optimum inhibition efficiency η = 98.78±0.34% followed in effectiveness by 0.3333% Morinda lucida with η = 93.20±1.76% at inhibiting steel-rebar corrosion in the corrosive test-environment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

281-285

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Yang, H. Fischer, R. Polder, Modified hydrotalcites as a new emerging class of smart additive of reinforced concrete for anticorrosion applications: A literature review, Mater. Corros. 64 (2013) 1-9.

DOI: 10.1002/maco.201206915

Google Scholar

[2] A. Królikowski, J. Kuziak, Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete, Electrochim. Acta 56 (2011) 7845-7853.

DOI: 10.1016/j.electacta.2011.01.069

Google Scholar

[3] A. Legat, Monitoring of steel corrosion in concrete by electrode arrays and electrical resistance probes, Electrochim. Acta 52 (2007) 7590-7598.

DOI: 10.1016/j.electacta.2007.06.060

Google Scholar

[4] M.A.G. Tommaselli, N.A. Mariano, S.E. Kuri, Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components, Construct. Build. Mater. 23 (2009) 328-333.

DOI: 10.1016/j.conbuildmat.2007.12.002

Google Scholar

[5] J.O. Okeniyi, O.A. Omotosho, O.O. Ajayi, O.O. James, C.A. Loto, Modelling the performance of sodium nitrite and aniline as inhibitors in the corrosion of steel-reinforced concrete, Asian J. Appl. Sci. 5 (2012) 132-143.

DOI: 10.3923/ajaps.2012.132.143

Google Scholar

[6] J.O. Okeniyi, O.A. Omotosho, O.O. Ajayi, C.A. Loto, Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media, Construct. Build. Mater. 50 (2014) 448-456.

DOI: 10.1016/j.conbuildmat.2013.09.063

Google Scholar

[7] J.O. Okeniyi, I.O. Oladele, I.J. Ambrose, S.O. Okpala, O.M. Omoniyi, C.A. Loto, A.P.I. Popoola, Analysis of inhibition of concrete steel-rebar corrosion by Na2Cr2O7 concentrations: Implications for conflicting reports on inhibitor effectiveness, J. Cent. South Univ. 20 (2013).

DOI: 10.1007/s11771-013-1898-8

Google Scholar

[8] J. –J. Fu, S. –N. Li, L. –H. Cao, Y. Wang, L. –H. Yan, L. –D. Lu, L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution, J. Mater. Sci. 45 (2010) 979-986.

DOI: 10.1007/s10853-009-4028-0

Google Scholar

[9] M.M. Mennucci, E.P. Banczek, P.R.P. Rodrigues, I. Costa, Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cem. Concr. Compos. 31 (2009) 418-424.

DOI: 10.1016/j.cemconcomp.2009.04.005

Google Scholar

[10] T. Oduola, I. Bello, G. Adeosun, A. –W. Ademosun, G. Raheem, G. Avwioro, Hepatotoxicity and nephrotoxicity evaluation in Wistar albino rats exposed to Morinda lucida leaf extract, N. Am. J. Med. Sci. 2 (2010) 230-233.

Google Scholar

[11] S. Muralidharan, V. Saraswathy, S.P. Merlin Nima, N. Palaniswamy, Evaluation of a composite corrosion inhibiting admixtures and its performance in Portland pozzolana cement, Mater. Chem. Phy. 86 (2004) 298–306.

DOI: 10.1016/j.matchemphys.2004.03.025

Google Scholar

[12] ASTM G109-99a. Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments, ASTM International, West Conshohocken, PA.

DOI: 10.1520/g0109-99a

Google Scholar

[13] ASTM C192/192M-02. Standard practice for making and curing concrete test specimens in the laboratory, ASTM International, West Conshohocken, PA.

Google Scholar

[14] J.O. Okeniyi, I.J. Ambrose, S.O. Okpala, O.M. Omoniyi, I.O. Oladele, C.A. Loto, P.A.I. Popoola, Probability density fittings of corrosion test-data: Implications on C6H15NO3 effectiveness on concrete steel-rebar corrosion. Sadhana – Acad. Proc. Eng. Sci. (2013).

DOI: 10.1007/s12046-014-0226-9

Google Scholar

[15] J.O. Okeniyi, I.J. Ambrose, I.O. Oladele, C.A. Loto, P.A.I. Popoola, Electrochemical performance of sodium dichromate partial replacement models by triethanolamine admixtures on steel-rebar corrosion in concretes, Int. J. Electrochem. Sci. 8 (2013).

DOI: 10.1016/s1452-3981(23)13146-4

Google Scholar

[16] J.O. Okeniyi, O.M. Omoniyi, S.O. Okpala, C.A. Loto, A.P.I. Popoola, Effect of ethylenediaminetetraacetic disodium dihydrate and sodium nitrite admixtures on steel-rebar corrosion in concrete. Euro. J. Environ. Civ. Eng. 17 (2013) 398-416.

DOI: 10.1080/19648189.2013.797927

Google Scholar

[17] D. Izquierdo, C. Alonso, C. Andrade, M. Castellote, Potentiostatic determination of chloride threshold values for rebar depassivation Experimental and statistical study, Electrochim. Acta 49 (2004) 2731-2739.

DOI: 10.1016/j.electacta.2004.01.034

Google Scholar

[18] P.R. Roberge, Statistical interpretation of corrosion test results, in: S.D. Cramer, B.S. Covino Jr., (Eds. ), ASM Handbook, Vol 13A – Corrosion: Fundamentals, Testing, and Protection, Materials Park, OH: ASM International, 2003, pp.425-429.

DOI: 10.31399/asm.hb.v13a.a0003641

Google Scholar

[19] ASTM G16-95 R04. Standard guide for applying statistics to analysis of corrosion data, ASTM International West Conshohocken PA.

Google Scholar

[20] J.O. Okeniyi, U.E. Obiajulu, A.O. Ogunsanwo, N.W. Odiase, E.T. Okeniyi, CH4 emission model from the waste of Sus domesticus and Gallus domesticus in Nigerian local farms: Environmental implications and prospects, Mitig. Adapt. Strateg. Glob. Chang. 18 (2013).

DOI: 10.1007/s11027-012-9365-7

Google Scholar

[21] J.O. Okeniyi, E.T. Okeniyi Implementation of Kolmogorov-Smirnov p-value computation in Visual Basic®: implication for Microsoft Excel® library function, J. Stat. Comput. Simul. 82 (2012) 1727-1741.

DOI: 10.1080/00949655.2011.593035

Google Scholar

[22] A.L. d.Q. Baddini, S.P. Cardoso, E. Hollauer, J.A. d.C.P. Gomes, Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions, Electrochim. Acta 53 (2007) 434-446.

DOI: 10.1016/j.electacta.2007.06.050

Google Scholar

[23] ASTM C876-91 R99. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, ASTM International, West Conshohocken, PA.

Google Scholar

[24] T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report, Construct. Build. Mater. 22 (2008) 609-622.

DOI: 10.1016/j.conbuildmat.2006.10.013

Google Scholar