Nonstoichiometry and Chemical Diffusion in Co3O4 Cobalt Oxide

Article Preview

Abstract:

Nonstoichiometry and chemical diffusion in Co3O4 oxide have been studied as a function of temperature (973-1173 K) and oxygen pressure (30-105 Pa), using thermogravimetric techniques. It has been found that at very low oxygen pressures, close to the dissociation pressure of the oxide, interstitial cations and quasi-free electrons are the predominant point defects, while at high pressures cation vacancies and electron holes predominate. This behaviour is reflected in complex dependence of the deviation from stoichiometry, y, in the Co3±yO4 oxide on oxygen pressure. At low pressures, namely, deviation from stoichiometry decreases with increasing oxygen pressure, reaching virtually constant value in intermediate pressures and increases at highest pressure range. Finally, these data as well as the results of kinetic rate measurements of Co3±yO4 formation have been utilized in calculating the chemical diffusion coefficient as a function of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

421-424

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.C. Chen, Y.G. Zhang, S. Fu, Mater. Lett. 61 (2007) 701-705.

Google Scholar

[2] S. Trasatli, G. Lodi, Electrodes of Conductive Metallic Oxides, Part A. S. Trasatli (Ed. ), Elsevier, Amsterdam, (1980).

Google Scholar

[3] E.M. Logothetis, K. Park, A.H. Meitzler, K.R. Laud, Appl. Phys. Lett. 26 (1975) 209-211.

Google Scholar

[4] S. Noguchi, M. Mizuhashi, Thin Solid Films 77 (1981) 99-106.

Google Scholar

[5] H. Kim, D.W. Park, H.C. Woo, J.S. Chung, Appl. Catal. B 19 (1998) 233-243.

Google Scholar

[6] W. Estrada, M.C.A. Fantini, S.C. de Castro, C.N. Polo de Fonseca, A. Gorenstein, J. Appl. Phys. 74 (1993) 5835-5841.

Google Scholar

[7] J. Pal, P. Chauhan, Mater. Charact. 61 (2010) 575-579.

Google Scholar

[8] R. Dieckmann, Ph. D. Dissertation: Punktfehlordnung, Nichtstöchiometrie und Transporteigenschaften von Oxiden der Übergangsmetalle Kobalt, Eisen und Nickel, Hannover, 1983 (in German).

Google Scholar

[9] S. Mrowec, Z. Grzesik, J. Phys. Chem. Solids 65 (2004) 1651-1657.

Google Scholar

[10] A. Kaczmarska, Z. Grzesik, S. Mrowec, High Temp. Mater. Process. 31 (2012) 371-379.

Google Scholar

[11] Z. Grzesik, Defect Diff. Forum 237-240 (2005) 139-144.

Google Scholar

[12] P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, J. Wiley, New York, (1972).

Google Scholar

[13] S. Mrowec, Defects and Diffusion in Solids, Elsevier, Amsterdam - Oxford - New York, (1980).

Google Scholar