Application of the Electrochemical Microcell Technique in Solid State Surface Analysis

Article Preview

Abstract:

In the two last decades, the Electrochemical Microcell Technique (EMT) was used in various electrochemical surface investigations. The diameter of microcapillaries was in the range between few and few hundred microns. This technique was commonly used in corrosion research. Indeed, metallic alloys exhibit a complex microstructure consisting of different metallic and intermetallic phases, inclusions, precipitates... The use of microcapillaries based techniques like EMT makes possible to perform local electrochemical measurements in individual phases. Therefore, it was possible to get information about the behavior of a single grain, inclusion, precipitate... From these information, precursor sites can be identified and criteria leading to corrosion can be proposed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

549-552

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Böhni, T. Suter, T. Schreyer, Electrochim. Acta 40 (1995) 1361–1368.

Google Scholar

[2] T. Suter, H. Böhni, Electrochim. Acta 42 (1997) 3275–3280.

Google Scholar

[3] M. M. Lohrengel, Electrochim. Acta 42 (1997) 3265–3271.

Google Scholar

[4] A.W. Hassel, M.M. Lohrengel, Electrochim Acta 42 (1997) 3227–3333.

Google Scholar

[5] T.Y. Liu, R.A. Boykins, Anal. Biochem. 182 (1989) 383–387.

Google Scholar

[6] J.O. Park, C.H. Paik, R.C. Alkire, J. Electrochem. Soc. 143 (1996) L174–L176.

Google Scholar

[7] P.T. Charles, J.G. Rangasammy, G.P. Anderson, T.C. Romanoski, A.W. Kusterbeck, Anal. Chim. Acta 525 (2004) 199–204.

Google Scholar

[8] H. Krawiec, S. Stanek, V. Vignal, J. Lelito, J.S. Suchy, Corros. Sci. 53 (2011) 3108–3113.

DOI: 10.1016/j.corsci.2011.05.054

Google Scholar

[9] H. Krawiec, V. Vignal, Z. Szkalarz, J. Solid Sate Electrochem. 13 (2009) 1181-1191.

Google Scholar

[10] L. Staemmler, T. Suter, H. Böhni, J. Electrochem. Soc. 151 (2004) G734– G739.

Google Scholar

[11] M.M. Lohrengel, A. Moehring, M. Pilaski, Electrochim. Acta 47 (2001) 137–141.

Google Scholar

[12] M. Schneider, U. Langklotz, A. Michaelis, B. Arnold, Surf. Interface Anal. 42 (2010) 281–286.

DOI: 10.1002/sia.3175

Google Scholar

[13] T. Suter, H. Böhni, Electrochim. Acta 47 (2001) 191–199.

Google Scholar

[14] V. Vignal, H. Krawiec, O. Heintz, R. Oltra, , Electrochim. Acta 52 (2007) 4994–5001.

Google Scholar

[15] L. Paussa, F. Andreatta, N.C.R. Navarro, A. Duran, L. Fedrizzi, Electrochim. Acta 70 (2012) 25–33.

Google Scholar

[16] J.A.D. Rose, T. Suter, A. Balkowiec, J. Michalski, K.J. Kurzydlowski, P. Schmutz, Corros Sci 55 (2012) 313–325.

Google Scholar

[17] O. Guseva, J. A. D. Rose, P. Schmutz, Electrochim Acta 88 (2013) 821–831.

Google Scholar

[18] R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, M.O. Speidel, Corros. Sci. 43 (2001) 707–726.

DOI: 10.1016/s0010-938x(00)00087-1

Google Scholar

[19] V. Vignal, D. Ba, H. Zhang, F. Herbst, S. LeManchet, Corros. Sci. 68 (2013) 275-278.

Google Scholar

[20] H. Krawiec, J. Lelito, E. Tyrała, J. Banaś, J. Solid State Electrochem. 13 (2009) 935–942.

DOI: 10.1007/s10008-008-0636-x

Google Scholar

[21] H. Krawiec, V. Vignal, J. Banaś, J. Electrochem. Soc. 153 (2006) B231-B237.

Google Scholar

[22] M. Sanchez, N. Aouina, D. Rose, P. Rousseau, H. Takenouti, V. Vivier, Electrochim. Acta 62 (2012) 276–281.

Google Scholar

[23] F. Arjmand, A. Adriaens, Electrochim. Acta 59 (2012) 222–227.

Google Scholar

[24] J.B. Jorcin, H. Krawiec, N. Pebere, V. Vignal, Electrochim. Acta 54 (2009) 5775–5781.

Google Scholar