Application of the Scanning Kelvin Probe Technique for Characterization of Corrosion Interfaces

Article Preview

Abstract:

This paper deals with the basic theory and the usability of the scanning Kelvin probe (SKP) being a non-destructive, non-contact method for testing the condition of the surface of conductor, semiconductor and dielectric samples. This technique is based on the electron work function (EWF) characteristic of various test substances and depends, inter alia, on the sample surface condition. During measurement, the so-called surface potential distribution map containing information about EWF value is registered. Key applications of SKP and its various modifications to characterization of corrosion interfaces, have been presented based on the newest literature data covering the past two years of the active research in the field of corrosion in a nanoscale.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

369-382

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Kelvin, G. Fitzgerald, W. Francis: Philos. Mag. (1798-1977) Vol. 46 (1898), p.82.

Google Scholar

[2] W. Thomson: Philos. Mag. (1798-1977) Vol. 46 (1898), p.82.

Google Scholar

[3] W.A. Zisman: Rev. Sci. Instrum. Vol. 3 (1932), p.367.

Google Scholar

[4] J.H. Parker, R.W. Warren: Rev. Sci. Instrum. Vol. 33 (1962), p.948.

Google Scholar

[5] R.J. Behm, K. Christmann, G. Ertl: Surf. Sci. Vol. 99 (1980), p.320.

Google Scholar

[6] M. Stratmann, H. Streckel: Corros. Sci. Vol. 30 (6/7) (1990), p.681.

Google Scholar

[7] M. Stratmann, H. Streckel: Corros. Sci. Vol. 30 (6/7) (1990), p.697.

Google Scholar

[8] M. Stratmann, H. Streckel: Corros. Sci. Vol. 30 (6/7) (1990), p.715.

Google Scholar

[9] M. Stratmann, H. Streckel, R. Feser: Corros. Sci. Vol. 32 (4) (1991), p.467.

Google Scholar

[10] L.T. Han, F. Mansfeld: Corros. Sci. Vol. 39 (1) (1997), p.199.

Google Scholar

[11] A. Nazarov, D. Thierry: J. Electrochem. Soc. Vol. 145 (1998), p. L39.

Google Scholar

[12] C. Chen, C.B. Breslin, F. Mansfeld: Werkst. Korros. Vol. 49 (1998), p.569.

Google Scholar

[13] P. Schmutz, G.S. Frankel: J. Electrochem. Soc. Vol. 145 (1998), p.2285.

Google Scholar

[14] P. Schmutz, G.S. Frankel: J. Electrochem. Soc. Vol. 145 (1998), p.2295.

Google Scholar

[15] http: /www. kelvinprobe. info/technique. htm.

Google Scholar

[16] S. Halas, T. Durakiewicz, P. Mackiewicz: Surf. Sci. Vol. 555 (2004), p.43.

Google Scholar

[17] R. Duś, R. Nowakowski, E. Nowicka: J. Alloy Compd. Vol. 404 (2005), p.284.

Google Scholar

[18] B. Reddy, J.M. Sykes: Prog. Org. Coat. Vol. 52 (2005), p.280.

Google Scholar

[19] M. Jönsson, D. Thierry, N. LeBozec: Corros. Sci. Vol. 48 (2006), p.1193.

Google Scholar

[20] G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Doora, M. Wicinski: Corros. Sci. Vol. 49 (2007), p. (2021).

Google Scholar

[21] M. Rohwerder, F. Turcu: Electrochim. Acta Vol. 53 (2007), p.290.

Google Scholar

[22] J.M. Sykes, M. Doherty: Corros. Sci. Vol. 50 (2008), p.2773.

Google Scholar

[23] A.Q. Fu, Y.F. Cheng: Corros. Sci. Vol. 51 (2009), p.914.

Google Scholar

[24] R. Zhao, Z. Zhang, J-b. Shi, L. Tao, S-z. Song: J. Cent. South Univ. Technol. Vol. 17 (2010), p.13.

Google Scholar

[25] C. Senöz, S. Evers, M. Stratmann, M. Rohwerder: Electrochem. Commun. Vol. 13 (2011), p.1542.

Google Scholar

[26] S. Evers, M. Rohwerder: Electrochem. Commun. Vol. 24 (2012), p.85.

Google Scholar

[27] M. Li, L.Q. Guo, L.J. Qiao, Y. Bai: Corros. Sci. Vol. 60 (2012), p.76.

Google Scholar

[28] A.B. Cook, Z. Barrett, S.B. Lyon, H.N. McMurray, J. Walton, G. Williams: Electrochim. Acta Vol. 66 (2012), p.100.

Google Scholar

[29] S. Evers, C. Senöz, M. Rohwerder: Sci. Technol. Adv. Mater. Vol. 14 (2013), p.014201.

Google Scholar

[30] G. Williams, H.N. McMurray, R.C. Newman: Electrochem. Commun. Vol. 27 (2013), p.144.

Google Scholar

[31] G. Wang, Y. Yan, J. Li, J. Huang, L. Qiao, A.A. Volinsky: Mat. Sci. Eng. A-Struct. Vol. 586 (2013), p.142.

Google Scholar

[32] G. Wang, Y. Yan, X. Yang, J. Li, L. Qiao: Electrochem. Commun. Vol. 35 (2013), p.100.

Google Scholar

[33] S. Evers, C. Senöz, M. Rohwerder: Electrochim. Acta Vol. 110 (2013), p.534.

Google Scholar

[34] R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, I. Rodríguez: Corros. Sci. Vol. 73 (2013), p.342.

Google Scholar

[35] M. Xue, W. Wang, F. Wang, J. Ou, C. Li, W. Li: J. Alloy Compd. Vol. 577 (2013), p.1.

Google Scholar

[36] R. Posner, N. Fink, G. Giza, G. Grundmeier: Surf. Coat. Technol. Vol. 253 (2014), p.227.

Google Scholar

[37] A. Nazarov, E. Diler, D. Persson, D. Thierry: J. Electroanal. Chem. (2014) (article in press), http: /dx. doi. org/10. 1016/j. jelechem. 2014. 07. 029.

Google Scholar

[38] H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, H. Shin: Nano Lett. Vol. 14 (2014), p.4413.

Google Scholar

[39] T. Lostak, A. Maljusch, B. Klink, S. Krebs, M. Kimpel, J. Flock, S. Schulz, W. Schuhmann: Electrochim. Acta Vol. 137 (2014), p.65.

DOI: 10.1016/j.electacta.2014.05.163

Google Scholar

[40] R. Montoya, C. Iglesias, M.L. Escudero, M.C. Garćia-Alonso: Mat. Sci. Eng. C Vol. 41 (2014), p.127.

Google Scholar

[41] S.M. Cambier, R. Posner, G.S. Frankel: Electrochim. Acta Vol. 133 (2014), p.30.

Google Scholar

[42] R.F. Schaller, J.R. Scully: Electrochem. Commun. Vol. 40 (2014), p.42.

Google Scholar

[43] E. Palacios-Lidón, C.R. Henry, C. Barth: ACS Catal. Vol. 4 (2014), p.1838.

Google Scholar

[44] R. Leiva-García, R. Sánchez-Tovar, C. Escrivà-Cerdán, J. García-Antón: Role of Modern Localised Electrochemical Techniques to Evaluate the Corrosion on Heterogeneous Surrfaces, Chapter 9, in: Modern Electrochemical Methods in Nano, Surface and Corrosion Science, M. Aliofkhazraei, Ed., Intech, 2014, http: /dx. doi. org/10. 5772/57204.

DOI: 10.5772/57204

Google Scholar

[45] S. Rossi, M. Fedel, F. Deflorian, M. del Carmen Vadillo: C.R. Chimie Vol. 11 (2008), p.984.

DOI: 10.1016/j.crci.2008.06.011

Google Scholar

[46] http: /www. kelvinprobe. info/technique. htm.

Google Scholar

[47] A. Maljusch, C. Senöz, M. Rohwerder, W. Schuhmann: Electrochim. Acta Vol. 82 (2012), p.339.

Google Scholar

[48] A.J. Nam, A. Teren, T.A. Lusby, A.J. Melmed: J. Vac. Sci. Technol. B Vol. 13 (1995), p.1556.

Google Scholar

[49] R.J. Jiang, Y.F. Cheng: Electrochem. Commun. Vol. 35 (2013), p.8.

Google Scholar

[50] U.R. Evans: The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, Edwards Arnold Ltd., London, 1960, pp.118-119.

Google Scholar

[51] W. Wang, P.E. Jenkins, Z. Ren: Corros. Sci. Vol. 53 (2011), p.845.

Google Scholar

[52] J. Jiang, J. Wang, Y. Lu, J. Hu: Electrochim. Acta Vol. 54 (2009), p.1426.

Google Scholar

[53] H. Sheng, C-f. Dong, K. Xiao, X-g. Li, L. Lu: Int. J. Min. Met. Mater. Vol. 19 (10) (2012), p.939.

Google Scholar

[54] G-L. Song, Z. Xu: Corros. Sci. Vol. 63 (2012), p.100.

Google Scholar

[55] S. Yee, R.A. Oriani, M. Stratmann: J. Electrochem. Soc. Vol. 138 (1991), p.55.

Google Scholar

[56] A. Nazarov, M. -G. Olivier, D. Thierry: Prog. Org. Coat. Vol. 74 (2012), p.356.

Google Scholar

[57] ASTM B117-97: Standard Practice for Operating Salt Spray (Fog) Apparatus.

Google Scholar

[58] M. Sun, K. Xiao, C. Dong, X. Li, P. Zhong: J. Mater. Eng. Perform. Vol. 22 (2013), p.815.

Google Scholar

[59] G. Grundmeier, K. Juttner, M. Stratmann: Novel Electrochemical Techniques in Corrosion Research, in: Materials Science and Technology: A Comprehensive Treatment: Corrosion and Environmental Degradation, Vol. 19, M. Schutze, Ed., Wiley-VCH, New York, (2000).

DOI: 10.1002/9783527619306.ch7

Google Scholar

[60] E. Juzeliūnas, A. Sudavičius, K. Jüttner, W. Fürbeth: Electrochem. Commun. Vol. 5 (2003), p.154.

Google Scholar