Solid State Phenomena
Vol. 235
Vol. 235
Solid State Phenomena
Vols. 233-234
Vols. 233-234
Solid State Phenomena
Vol. 232
Vol. 232
Solid State Phenomena
Vol. 231
Vol. 231
Solid State Phenomena
Vol. 230
Vol. 230
Solid State Phenomena
Vol. 229
Vol. 229
Solid State Phenomena
Vol. 228
Vol. 228
Solid State Phenomena
Vol. 227
Vol. 227
Solid State Phenomena
Vol. 226
Vol. 226
Solid State Phenomena
Vol. 225
Vol. 225
Solid State Phenomena
Vol. 224
Vol. 224
Solid State Phenomena
Vol. 223
Vol. 223
Solid State Phenomena
Vol. 222
Vol. 222
Solid State Phenomena Vol. 228
Paper Title Page
Abstract: This work presents the basic theory and the usability of the scanning vibrating electrode technique (SVET), especially in the field of corrosion. At present, SVET is to be considered as one of the latest electrochemical testing methods. The essence of determining the current density resulting from corrosion is limited to the measurement of the potential gradient between the two points on the surface of the metal and over it, within the electric field of a local element. SVET has been used to study local, galvanic and intercrystalline corrosion. It is particularly useful in studying the corrosion of alloy steels and welding agents. This paper presents a review of the literature on the newest research in this field.
353
Abstract: This paper deals with the basic theory and the usability of the scanning Kelvin probe (SKP) being a non-destructive, non-contact method for testing the condition of the surface of conductor, semiconductor and dielectric samples. This technique is based on the electron work function (EWF) characteristic of various test substances and depends, inter alia, on the sample surface condition. During measurement, the so-called surface potential distribution map containing information about EWF value is registered. Key applications of SKP and its various modifications to characterization of corrosion interfaces, have been presented based on the newest literature data covering the past two years of the active research in the field of corrosion in a nanoscale.
369
Localized Electrochemical Impedance Spectroscopy for Studying the Corrosion Processes in a Nanoscale
Abstract: This work deals with localized electrochemical impedance spectroscopy (LEIS) which is an improved technique of the commonly used electrochemical impedance spectroscopy (EIS). Thanks to modern structural solutions, the LEIS technique ensures local impedance measurement. Therefore, it is used in the research into point corrosion, such as the pitting corrosion, and in the research into protective coatings or into alloys including alloy steels. This review paper presents the basic theory and the usability of the LEIS based on the literature on the newest research in the field of corrosion.
383
Abstract: This paper deals with the basic theory and the usability of Scanning Electrochemical Microscopy (SECM) in corrosion research. The SECM is the in situ method of surface characterization which is based on the scanning of the tested surface using ultramicroelectrode and simultaneous electrochemical testing of the surface. This technique provides an electrochemical imaging of the surface. Key applications of SECM have been demonstrated based on the newest literature data covering the past two years of the active research in the field of corrosion in a nanoscale.
394