TEM Investigations of Aluminium Composite Materials Reinforced with Ti(C,N) Ceramic Particles

Article Preview

Abstract:

Investigations of composite materials based on EN AW-AlCu4Mg1 (A) aluminium alloy reinforced with Ti (C,N) particles with weight ratios of 5, 10, and 15% are presented in this paper. The metallographic investigations of composite materials show banding of the reinforcing particles in aluminium matrix after the performed extrusion process. The structure observed in composites materials is oriented parallel to the extrusion direction. The amount of reinforcement particles Ti (C,N) has influence on the mechanical properties of the obtained composite materials. The increase of hardness is observed with the growth of the amount of reinforcement particles. Hardness increased from 89 HV1 for the material without the reinforcing phase to 143 HV1 for 15% of the Ti (C,N) reinforced material.Based on the microstructural investigations of the obtained composite materials, the uniform distribution of the reinforcing particles in the aluminium matrix was also revealed in the obtained structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 229)

Pages:

57-62

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. S. Prasad, C. Shoba, N. Ramanaiah, Investigations on mechanical properties of aluminium hybrid composites, Journal of Materials Research and Technology 3 (1) (2014) 79-85.

DOI: 10.1016/j.jmrt.2013.11.002

Google Scholar

[2] KV. Mahendra, K. Radha Krishna, Characterization of Stri Cast Al-Cu-(fly ash+SiC) hybrid metal matrix composites, Journal of Composite Materials 44(8) (2010) 989-1005.

DOI: 10.1177/0021998309346386

Google Scholar

[3] A. M. Amaro, P. N. B. Reis, M. A. Neto, C. Louro, Effect of different commercial oils on mechanical properties of composite materials, Composite Structures 118 (2014) 1-8.

DOI: 10.1016/j.compstruct.2014.07.017

Google Scholar

[4] F. Fritzen, D. M. Kochmann, Material instability-induced extreme damping in composites: A computational study, International Journal of Solids and Structures 51 (2014) 4101-4112.

DOI: 10.1016/j.ijsolstr.2014.07.028

Google Scholar

[5] A. Włodarczyk-Fligier, L.A. Dobrzański, M. Adamiak, Influence of heat treatment on properties and corrosion resistance of Al-composite, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 55-58.

Google Scholar

[6] J. Dolata, M. Dyzia, W. Walke: Influence of Particles Type and Shape on the Corrosion Resistance of Aluminium Hybrid Composites, Light Metals and their Alloys II, Solid State Phenomena, Vol. 191 (2012).

DOI: 10.4028/www.scientific.net/ssp.191.81

Google Scholar

[7] Włodarczyk-Fligier, L.A. Dobrzański, J. Konieczny, Structure of EN AW-Al Cu4Mg1(A) composite materials reinforced with the Ti(C, N) ceramic particles, Journal of Achievements in Materials and Manufacturing Engineering, 51/1 (2012) 22-29.

DOI: 10.4028/www.scientific.net/msf.530-531.243

Google Scholar

[8] M. Dyzia, J. Śleziona, Aluminium matrix composites reinforced with AlN particles formed by in situ reaction, Archives of Materials Science and Engineering 31/1 (2008) 17-20.

Google Scholar

[9] L. A. Dobrzański, J. Konieczny, Effect of extrusion parameters on the heterogeneity of the structure and condition of the surface layer of aluminium profiles, Conference Proceedings M3E'2000, Gliwice, 2000, 63-66.

Google Scholar

[10] L. A Dobrzański, A. Włodarczyk-Fligier, Matrix composite materials reinforced by ceramic particles, Proceedings of the 17th International Scientific Conference on Contemporary Achievements in Mechanics, Manufacturing and Materials Science, CAMS'2011, Gliwice, 2011, 59 (in polish).

Google Scholar

[11] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Composite materials based on EN AW-Al Cu4Mg1(A) aluminium alloy reinforced with the Ti(C, N) ceramic particles, Materials Science Forum 530-531 (2006) 243-248.

DOI: 10.4028/www.scientific.net/msf.530-531.243

Google Scholar

[12] A.J. Dolata, M. Dyzia: Aspects of fabrication aluminium matrix heterophase composites by suspension method, IOP Conf. Series: Materials Science and Engineering 35 (2012) 012020 doi: 10. 1088/1757-899X/35/1/012020.

DOI: 10.1088/1757-899x/35/1/012020

Google Scholar

[13] A. Dolata-Grosz, J. Śleziona, B. Formanek, J. Wieczorek: Al-FeAl-TiAl-Al2O3 composite with hybrid reinforcement, Journal of Materials Processing Technology Vol. 162-163 SPEC. ISS., (2005), pp.33-38, DOI: 10. 1016/j. jmatprotec. 2005. 02. 009.

DOI: 10.1016/j.jmatprotec.2005.02.009

Google Scholar

[14] A. J. Dolata: Hybrid Composites Shaped by Casting Methods, in Light Metal and their Alloys III, Solid State Phenomena Vol. 211 (2014) pp.47-52, doi: 10. 4028/www. scientific. net/SSP. 211. 47.

DOI: 10.4028/www.scientific.net/ssp.211.47

Google Scholar

[15] A. Włodarczyk-Fligier, L.A. Dobrzański, M. Adamiak, Corrosion resistance of the sintered composite materials with the EN AW-AlCu4Mg1(A) alloy matrix reinforced with Al2O3 and Ti(C, N) ceramic particles, 13th International Materials Symposium (IMSP'2010) 13-15th October 2010, Pamukkale University, Denizli, Turkey (2010).

Google Scholar

[16] L. Wang, H. Liu, Ch. Huang, B. Zou, X. Liu, Effects of sintering processes on mechanical properties and microstructure of Ti(C, N)-TiB2-Ni composite ceramic cutting tool material, Ceramics International 40 (2014) 16513-16519.

DOI: 10.1016/j.ceramint.2014.08.003

Google Scholar

[17] D. Park, Y. Lee, Effect of carbides on the microstructure and properties of Ti(C, N)-based ceramics, Journal of the American Chemical Society 82 (1999) 3150-3154.

Google Scholar

[18] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C, N) cermets-metallurgy and properties, International Journal of Refractory Metals and Hard Materials 13 (1995) 343-351.

DOI: 10.1016/0263-4368(95)00027-g

Google Scholar

[19] K. Labisz, Microstructure and mechanical properties of high power diode laser (HPDL) treated cast aluminium alloys, Materials Science and Engineering Technology, Mat. -wiss. u. Werkstofftech. 45 (2014) 314-324, doi: 10. 1002/mawe. 201400231.

DOI: 10.1002/mawe.201400231

Google Scholar

[20] L. A. Dobrzański, J. Konieczny, Influence of extrusion parameters on the structure homogeneity and quality of the surface layer of aluminium alloy profiles, Materials, Mechanical and Manufacturing Engineering M3E'2000, Gliwice (2000).

Google Scholar

[21] PN-EN 573-3, Aluminium and aluminium alloys–Chemical compositions and plastic formed product types, (1998).

Google Scholar

[22] PN-EN ISO 6507-1, Metals - Vickers hardness measurement method - Part 1: Test methods, (2007).

Google Scholar