Femtosecond Photo-Induced Phenomena in Multiferroic Hexagonal Manganite YMnO3

Article Preview

Abstract:

Transient optical anisotropy in the hexagonal manganite YMnO3 excited by linearly and circularly polarized laser pulses has been observed. The photo-induced anisotropy was investigated by the pump-probe technique based on a femtosecond Ti:sapphire laser generating optical pulses at the photon energy of 1.55 eV. Temporal and spectral dependencies of the photo-induced optical rotation and ellipticity were analyzed by a theoretical model considering ultrafast population and relaxation processes near the interband transitions from the hybridized O2−(2p)-Mn3+(3d) (Γ1) to the Mn3+(3d3z2−r2) (Γ5) states at photon energies of the laser excitation. Very short relaxation time of ~10 fs, which is the Raman coherence time between the excited Γ5|x> and Γ5|y> states, has been determined. It is found that this coherence time is much shorter than a charge relaxation time of ~500 fs between the Γ5|x,y> and Γ1|g> states for the interband electronic transition Γ1→Γ5.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

149-152

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kirilyuk, A.V. Kimel, T. Rasing, Rev. Mod. Phys. 82 (2010) 2731-2784.

DOI: 10.1103/revmodphys.82.2731

Google Scholar

[2] A.J. Ramsay, Semicond. Sci. Technol. 25 (2010) 103001-1-23.

Google Scholar

[3] Bigot, J. -Y., Hübner, W., Rasing, T., Chantrell, R. (Eds. ), Proceedings of the International Conference UMC 2013 Strasbourg, France, 2013, Series: Springer Proc. Phys. 159 (2015).

DOI: 10.1007/978-3-319-07743-7

Google Scholar

[4] T. Kamiya, Femtosecond Technology, Springer, Berlin, (1999).

Google Scholar

[5] I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76 (2004) 323-410.

DOI: 10.1103/revmodphys.76.323

Google Scholar

[6] G.P. Zhang, Phys. Rev. Lett. 86 (2001) 2086-(2089).

Google Scholar

[7] R. Gómez-Abal, O. Ney, K. Satitkovitchai, W. Hübner, Phys. Rev. Lett. 92 (2004) 227402-1-4.

DOI: 10.1103/physrevlett.92.227402

Google Scholar

[8] S. Lee, A. Pirogov, M. Kang, K. -H. Jang, et al., Nature (London) 451 (2008) 805-808.

Google Scholar

[9] G.A. Smolenskiĭ, I.E. Chupis, Sov. Phys. Usp. 25 (1982) 475-493.

DOI: 10.1070/pu1982v025n07abeh004570

Google Scholar

[10] W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442 (2006) 759-765.

Google Scholar

[11] D. Fröhlich, S. Leute, V.V. Pavlov, R.V. Pisarev, Phys. Rev. Lett. 81 (1998) 3239-3242.

Google Scholar

[12] M. Fiebig, D. Fröhlich, K. Kohn, S. Leute, T. Lottermoser, V.V. Pavlov, R.V. Pisarev, Phys. Rev. Lett. 84 (2000) 5620-5623.

DOI: 10.1103/physrevlett.84.5620

Google Scholar

[13] A.V. Kimel, R.V. Pisarev, F. Bentivegna, T. Rasing, Phys. Rev. B 64 (2001) 201103-1-4.

Google Scholar

[14] Y.T. Wang, C.W. Luo, T. Kobayashi, Adv. Condens. Matter Phys. 2013 (2013) 104806-1-13.

Google Scholar

[15] G.F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz, Properties of the Thirty-two Point Groups, MIT Press, Cambridge, MA, (1963).

Google Scholar

[16] A.M. Kalashnikova, R.V. Pisarev, JETP Lett. 78 (2003) 143-147.

Google Scholar

[17] W.S. Choi, D.G. Kim, S.S.A. Seo, et al., Phys. Rev. B 77 (2008) 045137-1-7.

Google Scholar

[18] W.S. Choi, S.J. Moon, S.S.A. Seo, et al., Phys. Rev. B 78 (2008) 054440-1-6.

Google Scholar

[19] A.S. Moskvin, R.V. Pisarev, Low Temp. Phys. 36 (2010) 489-510.

Google Scholar

[20] M. Pohl, V.V. Pavlov, I.A. Akimov, V.N. Gridnev, R.V. Pisarev, D.R. Yakovlev, M. Bayer, Phys. Rev. B 88 (2013) 195112-1-7.

Google Scholar

[21] F. Meier, B.P. Zakharchenya (Eds. ), Optical Orientation, Elsevier, Amsterdam, (1984).

Google Scholar

[22] M. Joffre, D. Hulin, A. Migus, et al., Phys. Rev. Lett. 62 (1989) 74-77.

Google Scholar

[23] R.W. Boyd, Nonlinear optics. Academic Press, San Diego, (2008).

Google Scholar