The Bias-Controlled Magnetoimpedance Effect in a MIS Structure

Article Preview

Abstract:

We report the giant magnetoimpedance effect in a ferromagnetic metal/insulator/semiconductor (MIS) diode with the Schottky barrier based on the Fe/SiO2/n-Si structure. It was established that the applied magnetic field strongly influences the impedance of the structure in the temperature range 10—30 K. In this range, there is the pronounced peak in the temperature dependence of the real part of the impedance at frequencies from 10 Hz to 1 MHz. The effect of the magnetic field manifests itself as a shift of the peak of the real part of the impedance. Under the action of a bias voltage of 5 V, the peak of the real part of the impedance similarly shifts toward lower temperatures with and without applied magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

451-455

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ripka, Magnetic sensors and magnetometers. Artech House Publishers; (2001).

Google Scholar

[2] L. V. Panina, K. Mohri, K. Bushida, and M. Noda, Giant magnetoimpedance and magnetoinductive effects in amorphous alloys, J. Appl. Phys. 1994. V. 76. 6198.

DOI: 10.1063/1.358310

Google Scholar

[3] M. Vazquez, J. Magn. Magn. Mater. 2001. Vol. 226 - 230. P. 693 - 699.

Google Scholar

[4] M. Knobel, K. R. Pirota, J. Magn. Magn. Mater. 2002. Vol. 242 - 245. Pt 1. P. 33 - 40.

Google Scholar

[5] M. Senda, O. Ishii, Y. Koshimoto, T. Tashima, IEEE Trans. Magn. 1994. Vol. 30. N 6. P. 4611 - 4613.

Google Scholar

[6] K. Hika, L. V. Panina, K. Mohri, IEEE Trans. Magn. 1996. Vol. 32. N 5. P. 4594 - 4596.

DOI: 10.1109/20.539090

Google Scholar

[7] T. Morikawa, Y. Nishibe, H. Yamadera et al., IEEE Trans. Magn. 1996. Vol. 32. N 5. P. 4965 - 4967.

Google Scholar

[8] S. Q. Xiao, Y. H. Liu, S. S. Yan et al., Phys. Rev. B. 2000. Vol. 61. N 8. P. 5734 - 5739.

Google Scholar

[9] Y. Zhou, J. Xu, X. Zhao, B. Cai, J. Appl. Phys. 2001. Vol. 83. N 3. P. 1816 - 1819.

Google Scholar

[10] G. V. Kurlyandskaya, J. L. Munoz, J. M. Barandiaran, J. Magn. Magn. Mater. 2002. Vol. 242 - 245. Pt 1. P. 291 - 293.

Google Scholar

[11] L.V. Panina, K. Mohri, Magneto-Impedance in multilayer Films, Sensors and actuators A, vol. 81, pp.71-77, (2000).

DOI: 10.1016/s0924-4247(99)00089-8

Google Scholar

[12] D. L. Losee, J. Appl. Phys. 46, 2204 (1975).

Google Scholar

[13] N. V. Volkov, A. S. Tarasov, E. V. Eremin, S. N. Varnakov, S. G. Ovchinnikov, and S. M. Zharkov, J. Appl. Phys. 109, 123924 (2011).

Google Scholar

[14] N. V. Volkov, A. S. Tarasov, E. V. Eremin, A. V. Eremin, S. N. Varnakov, and S. G. Ovchinnikov, J. Appl. Phys. 112, 123906 (2012).

DOI: 10.1063/1.4769788

Google Scholar

[15] N.V. Volkov, A.S. Tarasov, E.V. Eremin, F.A. Baron, S.N. Varnakov, S.G. Ovchinnikov, J. Appl. Phys.  114, 093903 (2013).

Google Scholar

[16] N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, A. O. Gustaitsev, V. V. Balashev and V. V. Korobtsov, Appl. Phys. Lett. 104, 222406 (2014).

Google Scholar