Green’s Functions of Spin and Electromagnetic Waves in the Sinusoidal Superlattice

Article Preview

Abstract:

The problem of finding the Green's function of spin and electromagnetic waves in the sinusoidal superlattice is considered. An analytical expression for the spectral representation of the Green's function has been found in the form of ascending continued fractions, the particular denominators of which are ordinary continued fractions. The Green’s function in the-space has been found by the numerical Fourier transformation of the Greens’s function found in the spectral representation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

47-50

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, et al., Photonic Crystals: Molding the Flow of Light, second ed., Princeton University Press, New Jersey, (2008).

Google Scholar

[2] K. Sakoda, Optical Properties of Photonic Crystals second ed., Springer, Germany, (2004).

Google Scholar

[3] M. Krawczyk and D. Grundler, J. Phys.: Condens. Matter. 26, (2014) 123202.

Google Scholar

[4] W.C. Gibson, The method of moments in electromagnetics, Chapman & Hall/CRC, N. -Y., (2008).

Google Scholar

[5] P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, N. -Y., (1953).

Google Scholar

[6] A. Yu. Val'kov, V.P. Romanov, and A.N. Shalaginov. Akust. Zh. 37 (1991) 636.

Google Scholar

[7] E.V. Aksenova, V.P. Romanov, and A. Yu. Val'kov. Phys. Rev. E. 59, (1999) 1184.

Google Scholar

[8] E.V. Aksenova, A. Yu. Val'kov, and V.P. Romanov, Optika i Spektroskopiya, 104 (2008), 440.

Google Scholar

[9] P.K. Korneev, Vestnik Stavropol State University, 38 (2004) 69.

Google Scholar

[10] V.Y. Skorobogat'ko, Theory of branching continued fractions and its applications in computational mathematics, Nauka, Moscow, (1983).

Google Scholar