[1]
A. Charchalis, A. Grządziela, Diagnosing of naval gas turbine rotors with the use of vibroacoustic parameters, in: A.G. Starr, B.K.N. Rao (Eds. ), Condition Monitoring and Diagnostic Engineering Management, 2001, p.495–502.
DOI: 10.1016/b978-008044036-1/50058-5
Google Scholar
[2]
M. Desbazeille, R.B. Randall, F. Guillet, M. El Badaoui, C. Hoisnard, Model–based diagnosis of large diesel engines based on angular speed variations of the crankshaft, Mechanical Systems and Signal Processing 24 (2010) 1529–1541.
DOI: 10.1016/j.ymssp.2009.12.004
Google Scholar
[3]
M. El-Ghamry, J.A. Steel, R.L. Reuben, T.L. Fog, Indirect measurement of cylinder pressure from diesel engines using acoustic emission, Mechanical Systems and Signal Processing 19 (2005) 751–765.
DOI: 10.1016/j.ymssp.2004.09.004
Google Scholar
[4]
P. Czech, G. Wojnar, R. Burdzik, Ł. Konieczny, J. Warczek, Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics, Journal of Vibroengineering Vol. 16 Issue 4 (2014) 1619–1639.
Google Scholar
[5]
Z. Dąbrowski, M. Zawisza, Investigations of the vibroacoustic signals sensitivity to mechanical defects not recognised by the OBD system in diesel engines, Solid State Phenomena Vol. 180 (2012) 194–199.
DOI: 10.4028/www.scientific.net/ssp.180.194
Google Scholar
[6]
J. Dziurdź, Transformation of Nonstationary Signals into Pseudostationary, Signals for the Needs of Vehicle Diagnostics, Acta Physica Polonica A Vol. 118 no. 1 (2010) 49–53.
DOI: 10.12693/aphyspola.118.49
Google Scholar
[7]
T. Figlus, Š. Liščák, Assessment of the vibroactivity level of SI engines in stationary and non-stationary operating conditions, Journal of Vibroengineering Vol. 16 Issue 3 (2014) 1349–1359.
Google Scholar
[8]
D. Górnicka, Vibroacoustic symptom of the exhaust valve damage of the internal combustion engine, Journal of Vibroengineering Vol. 16 Issue 4 (2014) 1925–(1933).
Google Scholar
[9]
A. Albarbar, F. Gu, A.D. Ball, Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis, Measurement 43 (2010) 1376–1386.
DOI: 10.1016/j.measurement.2010.08.003
Google Scholar
[10]
P. Charles, J.K. Sinha, F. Gu, L. Lidstone, A.D. Ball, Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis, Journal of Sound and Vibration 321 (2009) 1171–1185.
DOI: 10.1016/j.jsv.2008.10.024
Google Scholar
[11]
S. Wierzbicki, M. Śmieja, Visualization of the Paramters and Changes of Signals Controlling the Operation of Common Rail Injectors, Solid State Phenomena Vol. 210 (2014) 136–141.
DOI: 10.4028/www.scientific.net/ssp.210.136
Google Scholar
[12]
P. Deuszkiewicz, J. Pankiewicz, J. Dziurdź, M. Zawisza, Modeling of powertrain system dynamic behavior with torsional vibration damper, Advanced Materials Research Vol. 1036 (2014) 586–591.
DOI: 10.4028/www.scientific.net/amr.1036.586
Google Scholar
[13]
W. Homik, Diagnostics, maintenance and regeneration, of torsional vibration dampers for crankshafts of ship diesel engines, Polish Maritime Research 1 (64) 2010, Vol. 17, 62–68.
DOI: 10.2478/v10012-010-0007-2
Google Scholar
[14]
B. Chiliński, Analysis of disturbance torque influence on critical state in rotational systems, Transport Problems, Volume 8 Issue 4 (2013) 137–146.
Google Scholar
[15]
R. Cohen, I. Porat, Coupled torsional and transverse vibration of unbalanced rotor, Journal of Applied Mechanics, Transactions of ASME 52 (3) (1985) 701–705.
DOI: 10.1115/1.3169125
Google Scholar