Energy Accumulation in Steel, in the Conditions of Constant-Amplitude

Article Preview

Abstract:

This work presents results of fatigue tests of P91 steel specimens under constant-amplitude and programmed loading in temperature T=600°C. Two strain levels, applied in different order, were used for programmed loading. The loading program level changes were introduced for different levels of damage. The tests provided the basis for analysis of strain energy ΔWpl in the function of the number of load cycles under constant-amplitude and programmed loading. It has been found that that the form of a loading program has an influence on the life and value of energy cumulated in the specimen until crack initiation. Verification of Palmgren Miner hypothesis revealed that its effectiveness depends on the loading program and temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 240)

Pages:

114-121

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kocańda S., Kocańda A., Low cycle fatigue strength of metals, PWN, Warsaw, 1989. (Niskocyklowa wytrzymałość zmęczeniowa metali, PWN, Warszawa, 1989).

Google Scholar

[2] Feltner C.E., Morrow J.D., Microplastic strain hysteresis energy as a criterion for fatigue fracture, Journal Basic Engineering ASME, March, 1961, pp.15-22.

DOI: 10.1115/1.3658884

Google Scholar

[3] Ellyin F., Kujawski D., Plastic strain energy in fatigue failure. Journal Pressure Vessel Technology, Trans. ASME 106, 1984, pp.342-347.

DOI: 10.1115/1.3264362

Google Scholar

[4] Gołoś K.,. Plastic strain energy under cyclic multiaxial states of stress. Mechanika Teoretyczna i Stosowana 1(26), (1988), pp.171-177.

Google Scholar

[5] Mroziński S., Topoliński T., New energy model of fatigue damage acaccumulation and its verification for 45-steel. Journal of Theoretical and Applied Mechanics 2(37), 1999, pp.223-239.

Google Scholar

[6] Gołoś K., Fatigue of steel in terms of energy, Warsow University of Technology scientific work, 1989. (Trwałość zmęczeniowa stali w ujęciu energetycznym. Prace Naukowe Politechniki Warszawskiej, 1989).

Google Scholar

[7] Gołoś K., Ellyin F., A total strain energy theory for cumulative fatigue damage. Trans. ASME, Journal of Pressure Vessel Technology, 110, 1988, pp.35-41.

DOI: 10.1115/1.3265565

Google Scholar

[8] Łagoda T., Fatigue life energy models of structural materials under uniaxial and multiaxial random load, Opole University of Technology, Monography 121, 2001. (Energetyczne modele trwałości zmęczeniowej materiałów konstrukcyjnych w warunkach jednoosiowych i wieloosiowych obciążeń losowych. Studia i monografie 121, Wyd. Politechniki Opolskiej, 2001).

Google Scholar

[9] Smith K.N., Watson P., Topper T.H.,. A stress-strain function for the fatigue of metals. Journal Materials 5, 1970, pp.767-776.

Google Scholar

[10] Kaleta J., Experimental basis for the formulation of fatigue energy hypotheses. Wroclaw University of Technology , Monography nr 24, (1998).

Google Scholar

[11] ASTM E606-92: Standard Practice for Strain - Controlled Fatigue Testing.

Google Scholar

[12] Mroziński S., Piotrowski M., About fatigue tests end criterion in elevated temperatures, Key Engineering Materials Vol. 598 (2014) pp.153-159.

DOI: 10.4028/www.scientific.net/kem.598.153

Google Scholar

[13] Mroziński S., Golański G. Influence of temperature change on fatigue properties of P91 steel, Materials Research Innovations, Volume 18 Issue S2 (may 2014), pp.504-508.

DOI: 10.1179/1432891714z.000000000546

Google Scholar