The Influence of Temperature and Nature of CaO Component on the Formation of α-C2SH

Article Preview

Abstract:

In this work hydrothermal synthesis was carried out at 175 and 200 °C for 2, 8, 16, 24 and 48 h when using a stoichiometric composition (CaO/SiO2=2.0) mixtures consisting of amorphous SiO2·nH2O and CaO or Ca (OH)2. It was determined that α-C2SH forms only after 16 h of the hydrothermal synthesis at 175 °C when using CaO. It starts to recrystallize to hilebrandite after 48 h. The temperature increase to 200 °C vividly fastens the formation of α-C2SH as a noticeable amount of this calcium silicate hydrate was identified in the product already after 2 h and it became the dominant compound after 8 h. In case of using Ca (OH)2, only negligible traces of α-C2SH were identified after 2 h and the growth of its amount in the product, while prolonging the synthesis, was much slower as it prevailed only after 16 h. In addition, considerable amounts of unreacted portlandite were identified in the product even after 48 h.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 244)

Pages:

12-18

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Grangeon, F. Claret, C. Lerouge, F. Warmont, T. Sato, S. Anraku, C. Numako, Y. Linard, B. Lanson, On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite, Cem. Concr. Res. 52 (2013).

DOI: 10.1016/j.cemconres.2013.05.007

Google Scholar

[2] L. Black, K. Garbev, G. Beuchle, P. Stemmermann, D. Schild, X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling, Cem. Concr. Res. 36 (6) (2006) 1023-1031.

DOI: 10.1016/j.cemconres.2006.03.018

Google Scholar

[3] G. Constantinides, F. J. Ulm, The nanogranular nature of C-S-H. J. Mech. Phys. Sol. 55 (1) (2007) 64-90.

Google Scholar

[4] X. Zhang, W. Chang, T. Zhang, C. K. Ong, Nanostructure of calcium silicate hydrate gels in cement paste, J. Am. Ceram. Soc. 83 (10) (2000) 2600 – 2604.

DOI: 10.1111/j.1151-2916.2000.tb01595.x

Google Scholar

[5] T. Tsutsumi, S. Nishimoto, Y. Kameshima, M. Miyake, Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption, J. Hazard. Mat. 266 (2014) 174-181.

DOI: 10.1016/j.jhazmat.2013.12.024

Google Scholar

[6] J. Cao, F. Liu, Q. Lin, Y. Zhang, Hydrothermal synthesis of xonotlite from carbide slag, Prog. Nat Sc. 18 (2008)1147-1153.

DOI: 10.1016/j.pnsc.2008.01.036

Google Scholar

[7] H. Youssef, D. Ibrahim, S. Komarneni, K.J.D. Mackenzie, Synthesis of 11 Å Al-substituted tobermorite from trachyte rock by hydrothermal treatment, Ceram. Int. 36 (1) (2010) 203-209.

DOI: 10.1016/j.ceramint.2009.07.004

Google Scholar

[8] K. Garbev, G. Beuchle, U. Scweike, D. Merz, O. Dregert, P. Stemmermann, Preparation of a novel cementitious material from hydrothermally synthesized C-S-H phases, J. Am. Ceram. Soc. 97 (2014) 2298–2307.

DOI: 10.1111/jace.12920

Google Scholar

[9] H. G. Midgley, S. K. Chopra, Hydrothermal reactions in the lime – rich part of the system CaO – SiO2, Mag. Concr. Res. 12 (34) (1960) 19 – 26.

Google Scholar

[10] B. V. Imlach, H. F. W. Taylor, Prolonged hydrothermal treatment of cement mixes I. Curing in water under saturated steam pressure at 140- 170 °C, Trans. Br. Ceram. Soc. 71(1972)71 – 75.

Google Scholar

[11] T. Yano, K. Urabe, H. Ikawa, T. Teraushi, N. Ishizawa, S. Udagawa, Structure of α – Dicalcium Silicate Hydrate, Acta Cryst. 49C (1993) 1555-1559.

DOI: 10.1107/s0108270193004767

Google Scholar

[12] K. Garbev, B. Gasharova, G. Beuchle, S. Kreisz, P. Stemmermann, First observation of α-Ca2[SiO3(OH)](OH) – Ca6[Si2O7][SiO4](OH)2 phase transformation uponthermal treatment in air, J. Am. Ceram. Soc. 91 (1) (2008) 263-271.

DOI: 10.1111/j.1551-2916.2007.02115.x

Google Scholar

[13] K. Garbev, G. Beuchle, U. Schweike, P. Stemmermann., Hydration behavior of Celitement®: Kinetics, phase composition, microstructure and mechanical properties, in: 13th International Congress on the Chemistry of Cement, Madrid, 2011, p.159.

Google Scholar

[14] B. Bresson, F. Meducin, H. J. Zanni, Hydration of tricalcium silicate (C3S) at high temperature and high pressure, J. Mater. Sci. 37 (2002) 5355-5365.

DOI: 10.1016/j.cemconres.2007.09.024

Google Scholar

[15] B. Bresson, F. Meducin, H. J. Zanni, Tricalcium silicate (C3S) hydration under high pressure at ambient and high temperature (200 °C), Cem. Concr. Res. 38 (3) (2008) 320-324.

DOI: 10.1016/j.cemconres.2007.09.024

Google Scholar