Role of Key Factors of Particulate Components in Biocomposites

Article Preview

Abstract:

The development of biocomposites based on natural fibres coming from plants and inorganic binder materials is in the foreground of research in the field of sustainable building materials. Biocomposites ́ properties are influenced by both particulate constituent characteristics. In last decades, the growing trend in using of plant fibres as filler and / or reinforcing material into biocomposites for building application is due to their renewability and environmentally friendly properties. Inorganic powdered binder substances, mainly Portland cement and/or hydraulic lime are used as matrix material in bio fibres reinforced composites. In this paper, the important characteristics of fibrous and isometric particles affecting the final properties of hardened composites will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 244)

Pages:

153-160

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain., Biocomposites reinforced with natural fibres: 2000-2010, Progress in Polymer Science, 37 (2012) 1552-1596.

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[2] J. Summerscales, N.P.J. Dissanayake, A.S. Virk, W. Hall, A review of bast fibres and their composites. Part 1 – Fibres as reinforcements, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1329-1335.

DOI: 10.1016/j.compositesa.2010.06.001

Google Scholar

[3] K.G. Satyanarayana, G.G.C. Arizaga, F. Wypych, Biodegradable composites based on lignocellulosic fibers – an overview, Progress in Polymer Science, 34 (2009) 982-1021.

DOI: 10.1016/j.progpolymsci.2008.12.002

Google Scholar

[4] M.J. John, S. Thomas, Review – biofibres and biocomposites, Carbohydrate Polymers, 71 (2008) 343-364.

DOI: 10.1016/j.carbpol.2007.05.040

Google Scholar

[5] S. Shinoja, R. Visvanathanb, S. Panigrahic, M. Kochubabua, Oil palm fiber (OPF) and its composites: a review, Industrial Crops and Products, 33 (2011) 7-22.

DOI: 10.1016/j.indcrop.2010.09.009

Google Scholar

[6] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: an overview, Macromolecular Materials and Engineering, 276 (2000) pp.1-24.

DOI: 10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

Google Scholar

[7] A.K. Bledzki, V.E. Sperber, O. Faruk, Natural and wood fibre reinforcements in polymers, Rapra Review Reports, 13 (2002) 1-144.

Google Scholar

[8] A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Progress in Polymer Science, 24 (1999) 221-274.

DOI: 10.1016/s0079-6700(98)00018-5

Google Scholar

[9] M. Le Troëdec, P. Dalmay, C. Patapy, C. Peyratout, C. Smith, D. Chotard, Mechanical properties of hemp-lime reinforced mortars: influence of the chemical treatments of fibers, J. Compos. Mater. 45 (2011) 2347-2357.

DOI: 10.1177/0021998311401088

Google Scholar

[10] N. Stevulova, J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka, M. Holub, Properties characterization of chemically modified hemp hurds, Materials, 7 (2014) 8131-8150.

DOI: 10.3390/ma7128131

Google Scholar

[11] M.F. Rosa, E.S. Medeiros, J.A. Malmonge, K.S. Gregorski, D.F. Wood, L.H.C. Mattoso, S.H. Imam, Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior, Carbohydrate Polymers, 81 (2010).

DOI: 10.1016/j.carbpol.2010.01.059

Google Scholar

[12] J. Gassan, A. Chate, A.K. Bledzki, Calculation of elastic properties of natural fibers, Journal of Materials Science, 36 (2001) 3715-3720.

DOI: 10.1023/a:1017969615925

Google Scholar

[13] J. Klemeš, P.S. Varbanov, D. Huisingh, Recent cleaner production advances in process monitoring and optimization, J. Cleaner Pro. 34 (2012) 1-8.

DOI: 10.1016/j.jclepro.2012.04.026

Google Scholar

[14] P.B. de Bruijn, K.H. Jeppssona, K. Sandinb, Ch. Nilssona, Mechanical properties of lime–hemp concrete containing shives and fibres, Biosystems Engineering, 103 (2009) 474-479.

DOI: 10.1016/j.biosystemseng.2009.02.005

Google Scholar

[15] A. Stikute, S. Kukle, G. Shakhmenko, Ecological materials for frame housing, Scientific Journal of Riga Technical University, Material Science. Textile and Clothing Technology, 6 (2011) 43-47.

Google Scholar

[16] Z.N. Azwa, B.F. Yousif, A.C. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Materials and Design, 47 (2013) 424-442.

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar

[17] H. Savastano Jr., S.F. Santos, M. Radonjic, W.O. Soboyejo, Fracture and fatigue of natural fiber-reinforced cementitious composites, Cement and Concrete Composites, 31 (2009) 232-243.

DOI: 10.1016/j.cemconcomp.2009.02.006

Google Scholar

[18] S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, L. Goudet, Mechanical and thermal properties of lime and hemp concrete (hempcrete, ) manufactured by a projection process, Construction Building Materials, 22 (2008) 2116-2123.

DOI: 10.1016/j.conbuildmat.2007.07.016

Google Scholar

[19] I. Preikss, J. Skujans, A. Adamovics, U. Iljins, Evaluation of hemp (Cannabis Sativa L. ) quality parameters for building material from foam gypsum products, Chemical Engineering Transaction, 32 (2013) 1639-1643.

Google Scholar

[20] L. Kidalova, N. Stevulova, E. Terpakova, A. Sicakova, Use of magnesium oxide-cement binder in composites based on hemp shives, Journal of Environmental Science and Engineering, 5 (2011) 736-741.

DOI: 10.1016/j.proeng.2013.09.013

Google Scholar

[21] L. Kidalova, E. Terpakova, N. Stevulova, MgO cement as suitable conventional binder's replacement in hemp concrete, Pollack Periodica, 6 (2011) 107-112.

DOI: 10.1556/pollack.6.2011.3.11

Google Scholar

[22] R. Brencis, J. Skujans, U. Iljins, I. Ziemelis, O. Osits, Research on foam gypsum with hemp fibrous reinforcement, Chemical Engineering Transaction, 25 (2011) 159-164.

Google Scholar

[23] S.R. Karade, Cement-bonded composites from lignocellulosic wastes, Construction Building Materials, 24 (2010) 1323-1330.

DOI: 10.1016/j.conbuildmat.2010.02.003

Google Scholar

[24] M. Tröedec, C. Peyratout, A. Smith, Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix, Journal of the European Ceramic Society, 29 (2009) 1861-1868.

DOI: 10.1016/j.jeurceramsoc.2008.11.016

Google Scholar

[25] M. Tröedec, P. Rachini, C. Peyratout, M. Rossignol, F. Kaftan, A. Smith, Influence of chemical treatments on adhesion properties of hemp fibres, Journal of Colloid and Interface Science, 356 (2011) 303-310.

DOI: 10.1016/j.jcis.2010.12.066

Google Scholar

[26] A.B. Thomsen, A. Thygesen, V. Bohn, K.V. Nielsen, B. Allesen, M.S. Jorgensen, Effects of chemical and physical pre-treatment processes on hemp fibers for reinforcement of composites and for textiles, Ind. Crop. Prod. 24 (2006) 113-118.

DOI: 10.1016/j.indcrop.2005.10.003

Google Scholar

[27] S. Renouard, Ch. Hano, J. Doussot, J.P. Blondeau, E. Lainé, Characterization of ultrasonic impact on coir, flax and hemp fibers, Materials Letters, 129 (2014) 137-141.

DOI: 10.1016/j.matlet.2014.05.018

Google Scholar

[28] L. Kidalova, N. Stevulova, E. Terpakova, A. Sicakova, Utilization of alternative materials in lightweight composites, Journal of Cleaner Production, 34 (2012) 116-119.

DOI: 10.1016/j.jclepro.2012.01.031

Google Scholar

[29] N. Stevulova, L. Kidalova, J. Junak, J. Cigasova, E. Terpakova, Effect of hemp shive sizes on mechanical properties of lightweight fibrous composites, Procedia Engineering, 42 (2012) 543-547.

DOI: 10.1016/j.proeng.2012.07.441

Google Scholar

[30] J. Cigasova, N. Stevulova, J. Junak, Properties of monitoring of fibrous composites based on hemp hurds with different mean particle size, Pollack Periodica, 8 (2013) 41-46.

DOI: 10.1556/pollack.8.2013.2.5

Google Scholar

[31] N. Stevulova, I. Schwarzova, Changes in the properties of composites caused by chemical treatment of hemp hurds, International Journal of Chemical, Biomolecular, Metallurgical, Materials Science and Engineering, 8 (2014) 363-367.

Google Scholar

[32] J. Cigasova, N. Stevulova, J. Junak, Influence of binder nature on properties of lightweight composites based on hemp hurds, International Journal of Modern Manufacturing Technologies, 5 (2013) 27-31.

DOI: 10.1016/j.proeng.2013.09.013

Google Scholar

[33] STN EN 206-1/A1 Concrete, Part 1, Specification, performance, production and conformity, (2009).

Google Scholar

[34] STN EN 12087/A1 Thermal insulating products for building applications, (2007).

Google Scholar