[1]
K. Kumar, K. Madhusoodanan, B.B. Rupani, Miniature specimen technique as an NDT tool for estimation of service life of operating pressure equipment, Bhabha Atomic Research Centre, Newsletter 285 (2007) 92-102.
Google Scholar
[2]
E.M. Rabenberg, B.J. Jaques, B.H. Sencer, F.A. Garner, P.D. Freyer, T. Okita, D.P. Butt, Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28 dpa, Journal of Nuclear Materials 448 (2014) 315-324.
DOI: 10.1016/j.jnucmat.2014.02.018
Google Scholar
[3]
T. Tomaszewski, J. Sempruch, Determination of the fatigue properties of aluminum alloy using mini specimen, Materials Science Forum 726 (2012) 63-68.
DOI: 10.4028/www.scientific.net/msf.726.63
Google Scholar
[4]
T. Tomaszewski, J. Sempruch, Verification of the fatigue test method applied with the use of mini specimen, Key Engineering Materials 598 (2014) 243-248.
DOI: 10.4028/www.scientific.net/kem.598.243
Google Scholar
[5]
N. Kashaev, M. Horstmann, V. Ventzke, S. Riekehr, N. Huber, Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V, Journal of Materials Research and Technology 2(1) (2013).
DOI: 10.1016/j.jmrt.2013.03.003
Google Scholar
[6]
R. Sarkar, K.K. Ray, Estimation of fracture toughness using miniature chevron-notched specimens, Fatigue and Fracture of Engineering Materials and Structures 31 (2008) 340-345.
DOI: 10.1111/j.1460-2695.2008.01237.x
Google Scholar
[7]
General Catalogue EN010, Italvibras.
Google Scholar
[8]
J. Steyn, Fatigue failure of deck support beams on a vibrating screen, International Journal of Piping and Pressure Vessels 61 (1995) 315-327.
DOI: 10.1016/0308-0161(94)00113-w
Google Scholar
[9]
R. Sołtysiak, Effect of laser welding parameters of DUPLEX 2205 steel welds on fatigue life, Solid State Phenomena 223 (2015) 11-18.
DOI: 10.4028/www.scientific.net/ssp.223.11
Google Scholar
[10]
Ł. Pejkowski, D. Skibicki, J. Sempruch, High-cycle fatigue behavior of austenitic steel and pure copper under uniaxial, proportional and non-proportional loading, Strojniski Vestnik-Journal Of Mechanical Engineering 60(9) (2013) 549-560.
DOI: 10.5545/sv-jme.2013.1600
Google Scholar
[11]
B. Ligaj, G. Szala, Comparative analysis of fatigue life calculation methods of C45 steel in conditions of variable amplitude loads in the low- and high-cycle fatigue ranges, Polish Maritime Research 19(4) (2012) 23-30.
DOI: 10.2478/v10012-012-0037-z
Google Scholar
[12]
G. Szala, B. Ligaj, Effect of the exponent in the description of Wohler fatigue diagram on the results of calculations of fatigue life, Engineering Materials 598 (2014) 231-236.
DOI: 10.4028/www.scientific.net/kem.598.231
Google Scholar
[13]
S. Mroziński, A. Lipski, Method for processing of the results of low-cycle fatigue tests, Materials Science 48(1) (2012) 83-88.
DOI: 10.1007/s11003-012-9475-0
Google Scholar
[14]
PN-EN ISO 6892-1: 2010 Metals - Tensile testing - Part 1: Test method at room temperature (in Polish).
Google Scholar
[15]
PN-74/H-04327 The study of metal fatigue. The test of axial tension - compression at constant cycle of external loads (in Polish).
Google Scholar
[16]
ISO 1099: 2006 Metallic materials - Fatigue testing - Axial force-controlled method.
Google Scholar
[17]
T. Tomaszewski, J. Sempruch. T. Piątkowski, Verification of selected models of size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy, Journal of Theoretical and Applied Mechanics 52(4) (2014) 243-248.
DOI: 10.15632/jtam-pl.52.4.883
Google Scholar