[1]
D. B. Johnson, Biomining — biotechnologies for extracting and recovering metals from ores and waste materials, Curr. Opin. Biotechnol. 30 (2014) 24–31.
DOI: 10.1016/j.copbio.2014.04.008
Google Scholar
[2]
H. R. Watling, Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options, Hydrometallurgy. 140 (2013) 163–180.
DOI: 10.1016/j.hydromet.2013.09.013
Google Scholar
[3]
A. Ghahremaninezhad, R. Radzinski, T. Gheorghiu, D. G. Dixon, E. Asselin, A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution, Hydrometallurgy. 155 (2015) 95–104.
DOI: 10.1016/j.hydromet.2015.04.011
Google Scholar
[4]
K. Yoo, S. Kim, J. Lee, M. Ito, M. Tsunekawa, N. Hiroyoshi, Effect of chloride ions on leaching rate of chalcopyrite, Miner. Eng. 23(6) (2010) 471–477.
DOI: 10.1016/j.mineng.2009.11.007
Google Scholar
[5]
X. Li, R. Mercado, T. Kernan, A. C. West, and S. Banta, Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition, Biotechnol. Bioeng. 111 (2014).
DOI: 10.1002/bit.25268
Google Scholar
[6]
J. M. Bigham, U. Schwertmann, S. J. Traina, R. L. Winland, M. Wolf, Schwertmannite and the chemical modeling of iron in acid sulfate waters, Geochim. Cosmochim. Acta. 60 (1996) 2111–2121.
DOI: 10.1016/0016-7037(96)00091-9
Google Scholar
[7]
J. Zhu, M. Gan, D. Zhang, Y. Hu, L. Chai, The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability, Mater. Sci. Eng. C. 33 (2013) 2679–2685.
DOI: 10.1016/j.msec.2013.02.026
Google Scholar
[8]
W. -X. Ren, P. -J. Li, L. Zheng, S. -X. Fan, V. A. Verhozina, Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans, J. Hazard. Mater. 162 (2009) 17–22.
DOI: 10.1016/j.jhazmat.2008.05.005
Google Scholar
[9]
Information on http: /www. dsmz. de/microorganisms/medium/pdf/DSMZ_Medium882. pdf.
Google Scholar
[10]
F. Giebner, S. Kaschabek, S. Schopf, M. Schlömann, Three adapted methods to quantify biomass and activity of microbial leaching cultures, Miner. Eng. 79 (2015) 169–175.
DOI: 10.1016/j.mineng.2015.05.016
Google Scholar
[11]
O. Wiche, H. Heilmeier, Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils, Miner. Eng. 92 (2016) 208–215.
DOI: 10.1016/j.mineng.2016.03.023
Google Scholar
[12]
X. Subirats, M. Rosés, E. Bosch, On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the pKa of Analytes - A Review, Sep. Purif. Rev. 36 (2007) 231–255.
DOI: 10.1080/15422110701539129
Google Scholar
[13]
H. Gomathi, Chemistry and electrochemistry of iron complexes, Bull. Electrochem. 16 (2000) 459–465.
Google Scholar
[14]
A. Schippers, W. Sand, Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur, Appl. Environ. Microbiol. 65 (1999) 319–321.
DOI: 10.1128/aem.65.1.319-321.1999
Google Scholar
[15]
H. R. Watling, D. M. Collinson, D. W. Shiers, C. G. Bryan, E. Watkin, Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore, Miner. Eng. 48 (2013) 68–76.
DOI: 10.1016/j.mineng.2012.10.014
Google Scholar
[16]
J. E. Dutrizac, The dissolution of sphalerite in ferric sulfate media, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 37 (2006) 161–171.
DOI: 10.1007/bf02693145
Google Scholar