[1]
H. R. Watling, The Bioleaching of Sulphide Minerals with Emphasis on Copper Sulphides - a Review, Hydrometallurgy. 84 (2006) 81-108.
DOI: 10.1016/j.hydromet.2006.05.001
Google Scholar
[2]
Y.N. Li, J. Kawashima, J. Li, A. Chandra, A. Gerson, A Review of the Structure, and Fundamental Mechanisms and Kinetics of the Leaching of Chalcopyrite, Adv. Coll. Inter. Sci. 197 (2013) 1-32.
DOI: 10.1016/j.cis.2013.03.004
Google Scholar
[3]
H. He, J.L. Xia, Y. Yang, H.C. Jiang, C.Q. Xiao, L. Zheng, C.Y. Ma, Y.D. Zhao, G.Z. Qiu, Sulfur Speciation on the Surface of Chalcopyrite Leached by Acidianus Manzaensis, Hydrometallurgy. 99 (2009) 45-50.
DOI: 10.1016/j.hydromet.2009.06.004
Google Scholar
[4]
S. Panda, P.K. Parhi, B.D. Nayak, N. Pradhan, U.B. Mohapatra, L.B. Sukla, Two Step Meso-Acidophilic Bioleaching of Chalcopyrite Containing Ball Mill Spillage and Removal of the Surface Passivation Layer, Biores. Technol. 130 (2013) 332-338.
DOI: 10.1016/j.biortech.2012.12.071
Google Scholar
[5]
H. Zhao, J. Wang, W. Qin, M. Hu, S. Zhu, G. Qiu, Electrochemical Dissolution Process of Chalcopyrite in the Presence of Mesophilic Microorganisms, Miner. Eng. 71 (2015) 159-169.
DOI: 10.1016/j.mineng.2014.10.025
Google Scholar
[6]
K. Kaplun, J. Li, N. Kawashima, A.R. Gerson, Cu and Fe Chalcopyrite Leach Activation Energies and the Effect of Added Fe3+. Geochim. Cosmochim. Acta. 75 (2011) 5865-5878.
DOI: 10.1016/j.gca.2011.07.003
Google Scholar
[7]
J. Li, N. Kawashima, K. Kaplun, V.J. Absolon, A.R. Gerson, Chalcopyrite Leaching: The Rate Controlling Factors, Geochim. Cosmochim. Acta. 74 (2010) 2881-2893.
DOI: 10.1016/j.gca.2010.02.029
Google Scholar
[8]
E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, and A. Ballester, Leaching of Chalcopyrite with Ferric Ion. Part IV: The Role of Redox Potential in the Presence of Mesophilic and Thermophilic Bacteria, Hydrometallurgy. 93 (2008) 106-115.
DOI: 10.1016/j.hydromet.2007.11.005
Google Scholar
[9]
E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, A. Ballester, Leaching of Chalcopyrite with Ferric Ion. Part III: Effect of Redox Potential on the Silver-Catalyzed Process, Hydrometallurgy. 93 (2008) 97-105.
DOI: 10.1016/j.hydromet.2007.11.006
Google Scholar
[10]
E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, A. Ballester, Leaching of Chalcopyrite with Ferric Ion. Part II: Effect of Redox Potential, Hydrometallurgy. 93 (2008) 88-96.
DOI: 10.1016/j.hydromet.2008.04.016
Google Scholar
[11]
G. Nazari, D. Dixon, D. Dreisinger, The Mechanism of Chalcopyrite Leaching in the Presence of Silver-Enhanced Pyrite in the Galvanox™ Process, Hydrometallurgy. 113 (2012) 122-130.
DOI: 10.1016/j.hydromet.2011.12.011
Google Scholar
[12]
G. Nazari, D. Dixon, D. Dreisinger, Enhancing the Kinetics of Chalcopyrite Leaching in the Galvanox™ Process, Hydrometallurgy. 105 (2011) 251-258.
DOI: 10.1016/j.hydromet.2010.10.013
Google Scholar
[13]
D. Dixon, D. Mayne, K. Baxter, Galvanox™–a Novel Galvanically-Assisted Atmospheric Leaching Technology for Copper Concentrates, Can. Metall. Quart. 47 (2008) 327-336.
DOI: 10.1179/cmq.2008.47.3.327
Google Scholar
[14]
H. Zhao, J. Wang, C. Yang, M. Hu, X. Gan, L. Tao, W. Qin, G. Qiu, Effect of Redox Potential on Bioleaching of Chalcopyrite by Moderately Thermophilic Bacteria: An Emphasis on Solution Compositions, Hydrometallurgy. 151 (2015) 141-150.
DOI: 10.1016/j.hydromet.2014.11.009
Google Scholar
[15]
Wang, J., R. Liao, L. Tao, H. Zhao, R. Zhai, W. Qin, and G. Qiu, A Comprehensive Utilization of Silver-Bearing Solid Wastes in Chalcopyrite Bioleaching. Hydrometallurgy, 2017. 169: pp.152-157.
DOI: 10.1016/j.hydromet.2017.01.006
Google Scholar