Biogenic Iron Compounds for Hazardous Metal Remediation

Article Preview

Abstract:

Biogenic minerals possess particular characteristics, such as high specific surface area and high reactivity, which lead to interesting properties useful in different fields (adsorbents, catalysts, oxidants or reductants). The treatment of effluents charged with heavy metals is attracting growing interest because of environmental and sanitary problems. The anaerobic bioreduction of soluble Fe(III) compounds by a natural consortium from an abandoned mine originates an iron containing precipitate. The aim of this study is the evaluation of the adsorption capacity of the biogenic compounds to treat diluted solutions containing arsenate, chromate and zinc after characterization by Scanning Electron Microscopy and X-ray diffraction analysis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

551-554

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Lovley, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiological Reviews 55 (1991) 259-287.

DOI: 10.1128/mr.55.2.259-287.1991

Google Scholar

[2] T. Hennebel, B. De Gusseme, N. Boon, W. Verstraete, Biogenic metals in advanced water treatment, Trends Biotechnol. 27 (2009) 90-98.

DOI: 10.1016/j.tibtech.2008.11.002

Google Scholar

[3] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy Metals Toxicity and the Environment, EXS 101 (2012) 133-164.

Google Scholar

[4] A.S. Mohammed, A. Kapri, R. Goel, Heavy Metal Pollution: Source, Impact, and Remedies, in: S.M. Khan, A. Zaidi, R. Goel, J. Musarrat (Eds. ) Biomanagement of Metal-Contaminated Soils, Springer Netherlands, Dordrecht, 2011, pp.1-28.

DOI: 10.1007/978-94-007-1914-9_1

Google Scholar

[5] K. Kostarelos, I. Gavriel, M. Stylianou, A.M. Zissimos, E. Morisseau, D. Dermatas, Legacy Soil Contamination at Abandoned Mine Sites: Making a Case for Guidance on Soil Protection, Bullet. Environ. Contam. Toxicol. 94 (2015) 269-274.

DOI: 10.1007/s00128-015-1461-4

Google Scholar

[6] C. García-Balboa, I.C. Bedoya, F. González, M.L. Blázquez, J.A. Muñoz, A. Ballester, Bio-reduction of Fe(III) ores using three pure strains of Aeromonas hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural consortium, Bioresour. Technol. 101 (2010).

DOI: 10.1016/j.biortech.2010.05.015

Google Scholar

[7] J.M. Zachara, R.K. Kukkadapu, J.K. Fredrickson, Y.A. Gorby, S.C. Smith, Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB), Geomicrobiol. J. 19 (2002) 179-207.

DOI: 10.1080/01490450252864271

Google Scholar

[8] K.K.H. Choy, J.F. Porter, G. McKay, Langmuir Isotherm Models Applied to the Multicomponent Sorption of Acid Dyes from Effluent onto Activated Carbon, J. Chem. Eng. Data 45 (2000) 575-584.

DOI: 10.1021/je9902894

Google Scholar

[9] C. Ng, J.N. Losso, W.E. Marshall, R.M. Rao, Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system, Bioresour. Technol. 85 (2002) 131-135.

DOI: 10.1016/s0960-8524(02)00093-7

Google Scholar