Sintering and Mechanical Properties of High-Porosity Ceramics Based on Diatomite

Article Preview

Abstract:

The study is devoted to the study of the mechanical properties of penodiatomite ceramics. Dynamics of changes in the dynamic moduli of elasticity of highly porous (up to 70%) diatomite ceramics from the annealing time at temperatures of 800-1000 °С has been experimentally studied. The values of the activation energies of the change in the modulus of elasticity (Wa = 0.22-0.24 eV) were measured for high-temperature annealing (800-1000 °С). The change in the phase composition of the samples under the influence of annealing is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 269)

Pages:

71-77

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.E.G.M.M. Bakr, Diatomite: Its Characterization, Modifications and Applications, Asian J. Mater. Sci. 2 (2010) 121-136.

Google Scholar

[2] P.S. Vassileva, M.S. Apostolova, A.K. Detcheva, E.H. Ivanova, Bulgarian natural diatomites: Modification and characterization, Chem. Pap. 67 (2013) 342-349.

DOI: 10.2478/s11696-012-0272-x

Google Scholar

[3] V. P. Il'ina, T. S. Shelekhova, Diatomites of Karelia for glass production, Class Ceram. 66 (2014) 109-112.

DOI: 10.1007/s10717-009-9139-1

Google Scholar

[4] D. Jang, L.R. Meza, F. Greer, J.R. Greer, Fabrication and deformation of three-dimensional hollow ceramic nanostructures, Nat. Mater. 12 (2013) 893-898.

DOI: 10.1038/nmat3738

Google Scholar

[5] P.I. Peretyat'ko, L.A. Kulikov, I.V. Melikhov, Yu.D. Perfil'ev, A.F. Pal', M.A. Timofeev, S.A. Gudoshnikov, N.A. Usov, Magnetic porous composite material: Synthesis and properties, Tech. Phys. Lett. 41 (2015) 974-976.

DOI: 10.1134/s1063785015100260

Google Scholar

[6] G. Dong, Z. Su, J. Wang, Diatomite modification and its application wastewather treatment, Adv. Mater. Res. 850-851 (2014) 1355-1359.

DOI: 10.4028/www.scientific.net/amr.850-851.1355

Google Scholar

[7] N. van Garderen, F.J. Clemens, M. Mezzomo, C.P. Bergmann, T. Graule, Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material, Appl. Clay Sci. 52 (2011) 115-121.

DOI: 10.1016/j.clay.2011.02.008

Google Scholar

[8] M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook, 2nd edition, Elsevier, Amsterdam, Boston, (2012).

Google Scholar

[9] J. Lou, R. Stevents, Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics, Ceram. Int. 25 (1999) 281-286.

DOI: 10.1016/s0272-8842(98)00037-6

Google Scholar

[10] A.G. Romashin, M. Yu. Rusin, F.Y. Borodai, Structural ceramic and fibrous materials based on quartz glass, Refract. Ind. Ceram. 45 (2004) 387-391.

DOI: 10.1007/s11148-005-0018-1

Google Scholar

[11] J. Dongchan, L.R. Meza, F. Greer, J.R. Greer, Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12 (2013) 893-898.

DOI: 10.1038/nmat3738

Google Scholar

[12] L. Han, K. Miyasaka, O. Terasaki, Electron crystallography, in: D.W. Bruce, D. O'Hare, R.I. Walton (Eds. ), Structure from Diffraction Methods: Inorganic Materials Series, John Wiley & Sons, USA, 2014, pp.201-258.

DOI: 10.1002/9781118695708.ch4

Google Scholar

[13] Y. Han, Y. Zhu, D. Zhang, Structural Diversity in Ordered Mesoporous Silica Materials, in: Q. Zhang, F. Wei (Eds. ), Advanced Hierarchical Nanostructured Materials, Wiley-VCH, Germany, 2014, pp.1-34.

DOI: 10.1002/9783527664948.ch1

Google Scholar