[1]
PB_Uddeholm_vanadis_23. Http: /www. uddeholm. com [online]. UDDEHOLMS AB, 2013 [cit. 2016-03-21]. Accessible from: uddeholm. com/files/PB_Uddeholm_vanadis_23_english. pdf.
DOI: 10.31399/asm.ad.ts0820
Google Scholar
[2]
H.K. Moon, K.B. Lee a H. Kwon, Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W–Mo–Cr–V(–Co) system, in: Materials Science and Engineering: A. 474 (2008).
DOI: 10.1016/j.msea.2007.04.014
Google Scholar
[3]
L. A. Dobrzański, W. Kasprzak, The influence of 5% cobalt addition on structure and working properties of the 9-2-2-5, 11-0-2-5 and 11-0-2-5 high-speed steels. Journal of Materials Processing Technology. 109 (2001) 52-64.
DOI: 10.1016/s0924-0136(00)00775-5
Google Scholar
[4]
D. Jakubéczyová, M. Fáberová, L. Parilák, Microstructural Analysis of Rapid Solidification High Speed Tool Steel, in: Surface modification technologies XIV: proceedings of the fourteenth International Conference on Surface Modification Technologies held in Paris, France, September 11-13, 2000. Volume 1. London: IOM Communications. (2001).
Google Scholar
[5]
J. R. Davis, S.R. Lampman, High-Speed tool steels, in: ASM handbook: Machining. 9th editon. Metals Park, Ohio: American Society for Metals, 1989, pp.51-59. ISBN 978-087-1700-223.
Google Scholar
[6]
P. Jurči, Ledeburitic-type tool steel. Ed 1. Prague: Czech Technical University in Prague, 2009, 221 p. ISBN 978-80-01-04439-1. (In Czech).
Google Scholar
[7]
P. Baldissera, C. Delprete, Deep Cryogenic Treatment: A Bibliographic Review, in: The Open Mechanical Engineering Journal. Benthham Science Publishers Ltd. 2 (2008) 1-11. ISSN 1874-155X/08.
DOI: 10.2174/1874155x00802010001
Google Scholar
[8]
B. Podgornik, I Paulin, B. Zajec, S. Jacobson, Deep cryogenic treatment of tool steels. Journal of Materials Processing Technology. 229 (2016) 398-406. DOI: 10. 1016/j. jmatprotec. 2015. 09. 045. ISSN 09240136.
DOI: 10.1016/j.jmatprotec.2015.09.045
Google Scholar
[9]
V. Leskovšek, B. Podgornik, Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel. Materials Science and Engineering. 531 (2012).
DOI: 10.1016/j.msea.2011.10.044
Google Scholar
[10]
S. Akincioğlu, H. Gökkaya, İ. Uygur, A review of cryogenic treatment on cutting tools, The International Journal of Advanced Manufacturing Technology. 78 (2015) 1609-1627. DOI: 10. 1007/s00170-014-6755-x. ISSN 0268-3768.
DOI: 10.1007/s00170-014-6755-x
Google Scholar
[11]
Heat treatment of tool steel. UDDEHOLM [online]. Germany: UDDEHOLMS AB, 2012 [cit. 2016-11-12]. Dostupné z: http: /www. uddeholm. com/files/heattreatment-english. pdf.
Google Scholar
[12]
A. Oppenkowski, S. Weber, W. Theisen, Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels, Journal of Materials Processing Technology. 210 (2010).
DOI: 10.1016/j.jmatprotec.2010.07.007
Google Scholar
[13]
J. Sobotová, P. Jurči, I. Dlouhý, The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Materials Science and Engineering: A. 652 (2016).
DOI: 10.1016/j.msea.2015.11.078
Google Scholar
[14]
J. Sobotová, M. Kuřík, J. Cejp, Influence of Heat Treatment Conditions on Properties of High-Speed P/M Steel Vanadis 30. Key Engineering Materials. 647 (2015) 17-22. DOI: 10. 4028/www. scientific. net/KEM. 647. 17. ISSN 1662-9795.
DOI: 10.4028/www.scientific.net/kem.647.17
Google Scholar
[15]
M. Gonec, B. Š. Batič, D Mandrino, A. Nagone, Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel. Materials Characterization. 61 (2010) 452-458. DOI: 10. 1016/j. matchar. 2010. 02. 003. ISSN 10445803.
DOI: 10.1016/j.matchar.2010.02.003
Google Scholar