Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium Ion Batteries

Article Preview

Abstract:

Nanosized spinel Li4Ti5O12 was successfully synthesized by a solid state reaction method at 800°C according to the Li4Ti5O12 cubic spinel phase structure. In this synthesizing process, anatase TiO2 and Li2CO3 were used as reactants. The average grain size of the synthesized powders was around 200 nm. The synthesized Li4Ti5O12 powder was characterized X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectrometry (EDS), and Specific Surface Area Analyzer (BET, Brunner-Emmett-Teller) respectively. X-ray diffraction results show that calcination temperature and time have the important effects on the crystal structure of Li4Ti5O12 powder. In this study, we used a first principle method, based on the density functional theory to explore electronic and structural properties of Li4Ti5O12, as anode material for lithium ion batteries. Differences on these properties between delithiation state Li4Ti5O12 and lithiation state Li7Ti5O12 are compared. All the predicted structural and electrochemical properties agree closely with the experimental findings in literature. The average intercalation voltage of 1.4V during charging/discharging were obtained. We have shown that the Li4Ti5O12 material exhibits insulating behavior with the band gap of 3.16 and 3.90 eV using the GGA and GGA+U+J0 calculations respectively. Li7Ti5O12 becomes metallic as Li atoms inserted in Li4Ti5O12 material. Spinel Li4Ti5O12 has been regarded as an attractive anode material for the development of high-power lithium-ion batteries because of its unique attributes of high safety and rate capability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 271)

Pages:

9-17

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Tarascon, M. Armand, Nature 414 (2001) 359.

Google Scholar

[2] J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (4), (2013) 1167.

Google Scholar

[3] D.T. Liu, C.Y. Ouyang, J. Shu, J. Jiang, Z.X. Wang, L.Q. Chen, Phys. Status Solidi B 243 (2006) 1835.

Google Scholar

[4] C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, Electrochem. Commun 9(5), (2007) 1107.

Google Scholar

[5] B.G. Lee, J.R. Yoon, J. Electr. Eng. Technol. 7(2), (2012) 207.

Google Scholar

[6] T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142, (1995) 1431.

Google Scholar

[7] S . Scharner, W. Weppner and P. Schmid-Beurmann, J. Electrochem. Soc. 146, (1999) 857.

Google Scholar

[8] Z.Y. Zhong, C.Y. Ouyang, S. Shi, M. S. Lei, ChemPhysChem 9, (2008) 2104.

Google Scholar

[9] Gieu J-B, Courrèges C, El Ouatani L, Tessier C , J. Power Sources 318, (2016) 291.

Google Scholar

[10] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81-82, (1999) 300.

Google Scholar

[11] Mark C. Biesinger, Leo W.M. Lau, Andrea R. Gerson, Roger St.C. Smart, Applied Surface Science, 257 (3), (2010) 887.

Google Scholar

[12] E. Ferg, R.J. Gummov,A. Koch, M.M. Thackeray, J. Electrochem. Soc. 141, (1994) l147.

Google Scholar

[13] J. P. Perdew, K. Burke and M. Enzerhof, Phys. Rev. Lett 77, (1996) 3865.

Google Scholar

[14] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

Google Scholar

[15] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

Google Scholar

[16] P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovich, J. Phys.: Condens. Matter 21, 395502 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[17] D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990).

Google Scholar

[18] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

Google Scholar

[19] P. E. Blochl, O. Jepsen and O. K. Andersen, Phys. Rev. B. 49, 16223 (1994).

Google Scholar

[20] M.C. Payne, M.P. Teter, D. C. Allan, T. A. Arias and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

Google Scholar

[21] M. Cococcioni and S. de Gironcoli, Phys. Rev. B. 71, 035105 (2005).

Google Scholar

[22] B. Hummetoglu, R. M. Wentzcovich and M. Cococcioni, Phys. Rev. B 84, 115108 (2011).

Google Scholar

[23] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Computational Materials Science, 68, (2013) 5188.

DOI: 10.1016/j.commatsci.2012.10.028

Google Scholar

[24] Adib Samin, Michael Kurth, Lei Cao, AIP Advances 5, (2015), 047110.

Google Scholar

[25] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, J. Electrochem. Soc. 148 (2001) A102.

DOI: 10.1149/1.1344523

Google Scholar

[26] Y. R. Jhan and J. G. Duh, Electrochem Acta 63(0), (2012) 9.

Google Scholar

[27] C. Kim, N. S. Norberg, C. T. Alexander, R. Kostecki, and J. Cabana, Advanced Functional Materials 23(9), (2013) 1214.

Google Scholar

[28] P.E. Lippens, M. Womes, P. Kubiak, J.C. Jumas, J.O. Fourcade, Solid State Sci. 6 (2004) 161.

Google Scholar

[29] S.Q. Shi, D.S. Wang, S. Meng, L.Q. Chen, X.J. Huang, Phys. Rev. B 67 (2003) 115130.

Google Scholar

[30] P. C. Tsai, W. D. Hsu, and S. K Lin, Journal. Electrochem. Soc. 161 (3), (2013) A439.

Google Scholar