The Possibilities of the Utilization of Waste Glass as Partial Replacement of Fine Aggregate for HPC

Article Preview

Abstract:

This contribution is to verify the utilization of waste glass as partial replacement of fine aggregate for high performance concrete (HPC). Test results of fresh and hardened HPC will be presented. This study has been conducted through basic experimental research in order to analyze the possibilities of recycling waste glasses (grinding glass, milled glass powder from municipal waste) as partial replacement of silica powder for HPC.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 272)

Pages:

290-295

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Shayan and A. Xu, Value-added utilisation of waste glass in concrete,, Cem. Concr. Res., vol. 34, no. 1, p.81–89, Jan. (2004).

DOI: 10.1016/s0008-8846(03)00251-5

Google Scholar

[2] A. Omran and A. Tagnit-Hamou, Performance of glass-powder concrete in field applications,, Constr. Build. Mater., vol. 109, no. Supplement C, p.84–95, Apr. (2016).

DOI: 10.1016/j.conbuildmat.2016.02.006

Google Scholar

[3] S. B. Park, B. C. Lee, and J. H. Kim, Studies on mechanical properties of concrete containing waste glass aggregate,, Cem. Concr. Res., vol. 34, no. 12, p.2181–2189, Dec. (2004).

DOI: 10.1016/j.cemconres.2004.02.006

Google Scholar

[4] Y. Shao, T. Lefort, S. Moras, and D. Rodriguez, Studies on concrete containing ground waste glass,, Cem. Concr. Res., vol. 30, no. 1, p.91–100, Jan. (2000).

DOI: 10.1016/s0008-8846(99)00213-6

Google Scholar

[5] K. Šeps and I. Broukalová, Mechanical Properties of Cement Composites with Alternative Binders,, Adv. Mater. Res., vol. 1106, p.37–40, (2015).

DOI: 10.4028/www.scientific.net/amr.1106.37

Google Scholar

[6] M. Ženíšek, T. Vlach, and L. Laiblová, Dosage of Silica Fume in High Performance Concrete,, Key Eng. Mater., vol. 677, p.98–102, (2016).

DOI: 10.4028/www.scientific.net/kem.677.98

Google Scholar

[7] M. Ženíšek, T. Vlach, and L. Laiblová, Options for Improving the Workability of High Performance Concrete,, Adv. Mater. Res., vol. 1106, p.53–56, (2015).

DOI: 10.4028/www.scientific.net/amr.1106.53

Google Scholar

[8] O. Holčapek, Resistance of refractory cement composite to cyclic temperature loading,, Key Eng. Mater., vol. 677, p.23–28, (2016).

DOI: 10.4028/www.scientific.net/kem.677.23

Google Scholar

[9] T. Pavlů, V. Kočí, and M. Šefflová, Study Replacement of Cement with Recycled Cement Powder and the Environmental Assessment,, Solid State Phenom., vol. 249, p.136–141, (2016).

DOI: 10.4028/www.scientific.net/ssp.249.136

Google Scholar

[10] C. Chandara, K. A. M. Azizli, Z. A. Ahmad, and E. Sakai, Use of waste gypsum to replace natural gypsum as set retarders in portland cement,, Waste Manag., vol. 29, no. 5, p.1675–1679, May (2009).

DOI: 10.1016/j.wasman.2008.11.014

Google Scholar

[11] Z. Z. Ismail and E. A. AL-Hashmi, Recycling of waste glass as a partial replacement for fine aggregate in concrete,, Waste Manag., vol. 29, no. 2, p.655–659, Feb. (2009).

DOI: 10.1016/j.wasman.2008.08.012

Google Scholar

[12] R. Idir, M. Cyr, and A. Tagnit-Hamou, Use of fine glass as ASR inhibitor in glass aggregate mortars,, Constr. Build. Mater., vol. 24, no. 7, p.1309–1312, Jul. (2010).

DOI: 10.1016/j.conbuildmat.2009.12.030

Google Scholar

[13] Y. Jani and W. Hogland, Waste glass in the production of cement and concrete – A review,, J. Environ. Chem. Eng., vol. 2, no. 3, p.1767–1775, Sep. (2014).

Google Scholar

[14] M. Kynclova, Environmentally effective waffle floor structures from fibre concrete,, in Proceedings of the 8th fib International PhD Symposium in Civil Engineering, Technical University of Denmark, Lyngby, (2010).

Google Scholar

[15] T. Vlach, P. Hájek, C. Fiala, L. Laiblová, J. Řepka, and P. Kokeš, Waffle Facade Elements from Textile Reinforced High Performance Concrete,, Proc. HiPerMat 2016 - 4th Int. Symp. Ultra-High Perform. Concr. High Perform. Constr. Mater., vol. 2016, p.10.

DOI: 10.4028/www.scientific.net/ssp.259.238

Google Scholar