[1]
A. Shayan and A. Xu, Value-added utilisation of waste glass in concrete,, Cem. Concr. Res., vol. 34, no. 1, p.81–89, Jan. (2004).
DOI: 10.1016/s0008-8846(03)00251-5
Google Scholar
[2]
A. Omran and A. Tagnit-Hamou, Performance of glass-powder concrete in field applications,, Constr. Build. Mater., vol. 109, no. Supplement C, p.84–95, Apr. (2016).
DOI: 10.1016/j.conbuildmat.2016.02.006
Google Scholar
[3]
S. B. Park, B. C. Lee, and J. H. Kim, Studies on mechanical properties of concrete containing waste glass aggregate,, Cem. Concr. Res., vol. 34, no. 12, p.2181–2189, Dec. (2004).
DOI: 10.1016/j.cemconres.2004.02.006
Google Scholar
[4]
Y. Shao, T. Lefort, S. Moras, and D. Rodriguez, Studies on concrete containing ground waste glass,, Cem. Concr. Res., vol. 30, no. 1, p.91–100, Jan. (2000).
DOI: 10.1016/s0008-8846(99)00213-6
Google Scholar
[5]
K. Šeps and I. Broukalová, Mechanical Properties of Cement Composites with Alternative Binders,, Adv. Mater. Res., vol. 1106, p.37–40, (2015).
DOI: 10.4028/www.scientific.net/amr.1106.37
Google Scholar
[6]
M. Ženíšek, T. Vlach, and L. Laiblová, Dosage of Silica Fume in High Performance Concrete,, Key Eng. Mater., vol. 677, p.98–102, (2016).
DOI: 10.4028/www.scientific.net/kem.677.98
Google Scholar
[7]
M. Ženíšek, T. Vlach, and L. Laiblová, Options for Improving the Workability of High Performance Concrete,, Adv. Mater. Res., vol. 1106, p.53–56, (2015).
DOI: 10.4028/www.scientific.net/amr.1106.53
Google Scholar
[8]
O. Holčapek, Resistance of refractory cement composite to cyclic temperature loading,, Key Eng. Mater., vol. 677, p.23–28, (2016).
DOI: 10.4028/www.scientific.net/kem.677.23
Google Scholar
[9]
T. Pavlů, V. Kočí, and M. Šefflová, Study Replacement of Cement with Recycled Cement Powder and the Environmental Assessment,, Solid State Phenom., vol. 249, p.136–141, (2016).
DOI: 10.4028/www.scientific.net/ssp.249.136
Google Scholar
[10]
C. Chandara, K. A. M. Azizli, Z. A. Ahmad, and E. Sakai, Use of waste gypsum to replace natural gypsum as set retarders in portland cement,, Waste Manag., vol. 29, no. 5, p.1675–1679, May (2009).
DOI: 10.1016/j.wasman.2008.11.014
Google Scholar
[11]
Z. Z. Ismail and E. A. AL-Hashmi, Recycling of waste glass as a partial replacement for fine aggregate in concrete,, Waste Manag., vol. 29, no. 2, p.655–659, Feb. (2009).
DOI: 10.1016/j.wasman.2008.08.012
Google Scholar
[12]
R. Idir, M. Cyr, and A. Tagnit-Hamou, Use of fine glass as ASR inhibitor in glass aggregate mortars,, Constr. Build. Mater., vol. 24, no. 7, p.1309–1312, Jul. (2010).
DOI: 10.1016/j.conbuildmat.2009.12.030
Google Scholar
[13]
Y. Jani and W. Hogland, Waste glass in the production of cement and concrete – A review,, J. Environ. Chem. Eng., vol. 2, no. 3, p.1767–1775, Sep. (2014).
Google Scholar
[14]
M. Kynclova, Environmentally effective waffle floor structures from fibre concrete,, in Proceedings of the 8th fib International PhD Symposium in Civil Engineering, Technical University of Denmark, Lyngby, (2010).
Google Scholar
[15]
T. Vlach, P. Hájek, C. Fiala, L. Laiblová, J. Řepka, and P. Kokeš, Waffle Facade Elements from Textile Reinforced High Performance Concrete,, Proc. HiPerMat 2016 - 4th Int. Symp. Ultra-High Perform. Concr. High Perform. Constr. Mater., vol. 2016, p.10.
DOI: 10.4028/www.scientific.net/ssp.259.238
Google Scholar