[1]
Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 203-205.
DOI: 10.1201/b16354-36
Google Scholar
[2]
Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23-33.
DOI: 10.15407/mining11.03.023
Google Scholar
[3]
Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55.
DOI: 10.15587/1729-4061.2017.112313
Google Scholar
[4]
Wiatowski, M., Kapusta, K., Świądrowski, J., Cybulski, K., Ludwik-Pardała, M., Grabowski, J., & Stańczyk, K. (2015). Technological aspects of underground coal gasification in the Experimental Barbara, Mine. Fuel, (159), 454-462.
DOI: 10.1016/j.fuel.2015.07.001
Google Scholar
[5]
Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 125- 132.
DOI: 10.1201/b16354-22
Google Scholar
[6]
Aghalayam, P. (2010). Underground Coal Gasification: A Clean Coal Technology. Handbook of Combustion.
DOI: 10.1002/9783527628148.hoc082
Google Scholar
[7]
Bhutto, A.W., Bazmi, A.A., & Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189-214.
DOI: 10.1016/j.pecs.2012.09.004
Google Scholar
[8]
Proshunin, Y. E., & Poturilov, A. M. (2016). Underground gasification of coal and lignite. Coke and Chemistry, 59(10), 370-379.
DOI: 10.3103/s1068364x16100082
Google Scholar
[9]
Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119.
DOI: 10.1201/b11329-19
Google Scholar
[10]
Zvyaghintsev, K.N. (1981). Trends of Development of Underground Coal Gasification in the USSR. Natural Resources Forum, 5(1), 99-107. https.
DOI: 10.1111/j.1477-8947.1981.tb00444.x
Google Scholar
[11]
Lavis, S., Courtney, R., & Mostade, S. (2013). Underground coal gasification. The Coal: Towards Cleaner Production, 226-239.
DOI: 10.1533/9780857097309.2.226
Google Scholar
[12]
Shafirovich, E., & Varma, A. (2009). Underground Coal Gasification: A Brief Review of Current Status. Industrial & Engineering Chemistry Research, 48(17), 7865-7875. https.
DOI: 10.1021/ie801569r
Google Scholar
[13]
Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross the disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-27.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[14]
Maksymova, E. (2018). Selecting the method of gas hydrate deposits development in terms of the regularities of their formation. Mining of Mineral Deposits, 12(1), 103-108.
DOI: 10.15407/mining12.01.103
Google Scholar
[15]
Sadovenko, I., Inkin, O., & Zagrytsenko, A. (2016). Theoretical and geotechnological fundamentals for the development of natural and man-made resources of coal deposits. Mining of Mineral Deposits, 10(4), 1-10.
DOI: 10.15407/mining10.04.001
Google Scholar
[16]
Timoshuk, V., Tishkov, V., Inkin, O., & Sherstiuk, E. (2012). Influence of coal layers gasification on bearing rocks. Geomechanical Processes During Underground Mining, 109-113.
DOI: 10.1201/b13157-20
Google Scholar
[17]
Bukowska, M., & Sygała, A. (2015). Deformation properties of sedimentary rocks in the process of underground coal gasification. Journal of Sustainable Mining, 14(3), 144-156.
DOI: 10.1016/j.jsm.2015.11.003
Google Scholar
[18]
Otto, C., & Kempka, T. (2015). Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes. Energies, 8(6), 5800-5827.
DOI: 10.3390/en8065800
Google Scholar
[19]
Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative Aspects of Underground Coal Gasification Technology in Mine Conditions. Mining of Mineral Deposits, 12(2), 68-75.
DOI: 10.15407/mining12.02.068
Google Scholar
[20]
Kochura, I. V. (2012). Coal Market of Ukraine: Analysis and Development Background. GeoScience Engineering, 58(1).
Google Scholar
[21]
Dychkovskyi, R.O. (2010). Mechanized coal seams extraction in faulting zones of rock massif in Lvivsko-Volynskyi coal basin conditions. Dnipropetrovsk: National Mining University, 110 p.
Google Scholar
[22]
Struev, M.I., Isakov, V.I., & Shpakova, V.B. (2014). Lvivsko-Volynskyi coal basin. Geological report. Kyiv: Naukova dymka, 272 p.
Google Scholar
[23]
Shul'ga, V. F., Lukin, A. E., & Lelik, B. I. (2000). Fossil gas-seepage marks in coal-bearing sequences of the Lviv-Volyn basin. Lithology and Mineral Resources, 35(5), 493-498.
DOI: 10.1007/bf02782735
Google Scholar
[24]
Shulha, P.L., Zavialova, O.A., & Pomianovska, H.M. (1979). Stratigraphy of the Carboniferous of Lvivsko-Volynskyi coal basin Ukrainian Stratigraphy. Geological Journal, (5), 314-361.
Google Scholar
[25]
Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 197–201. https.
DOI: 10.1201/b16354-35
Google Scholar
[26]
Majkherchik, T., Gajko, G.I., & Malkovskij, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol', 48-54.
Google Scholar
[27]
Busylo, V., Savelieva, T., Serdyuk, V., Saveliev, V., & Demchenko, Yu. (2017). Study of massif stress-strain state while mining the series of flat strata. Mining of Mineral Deposits, 11(1), 80-86.
DOI: 10.15407/mining11.01.080
Google Scholar
[28]
Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchyk, Ye. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif Around Faulting. International Journal of Engineering Research in Africa, (35), 77-88.
DOI: 10.4028/www.scientific.net/jera.35.77
Google Scholar
[29]
Chetveryk, M., Bubnova, O., & Babiy, K. (2017). The rate of deformation development in the rock massif on the basis of surveying monitoring on the earth surface. Mining of Mineral Deposits, 11(1), 57-64.
DOI: 10.15407/mining11.01.057
Google Scholar
[30]
Kuz'menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Mining of Mineral Deposits, 45-48.
DOI: 10.1201/b16354-9
Google Scholar
[31]
Kozel, K.K. (1990). An influence of disjunctive fault plane on mechanized complex productivity. Coal of Ukraine, (4), 16–17.
Google Scholar
[32]
Gonyk, E., & Ivanina, A. (2014). Definition of the Mississippian–Pennsylvanian Boundary in the Lviv–Volyn Coal Basin (Western Ukraine), Based on Palynological Data. STRATI 2013, 1091-1094.
DOI: 10.1007/978-3-319-04364-7_208
Google Scholar
[33]
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4).
DOI: 10.1016/j.acme.2018.01.012
Google Scholar
[34]
Ivanova, A., & Zaitseva, L. (2004). Studies of the coal facies in Western Ukraine (the Lvov-Volyn basin). International Journal of Coal Geology, 58(1-2), 67-73.
DOI: 10.1016/j.coal.2003.08.007
Google Scholar
[35]
Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016).
Google Scholar
[36]
Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
DOI: 10.29202/nvngu/2019-5/4
Google Scholar
[37]
Lavrov, N.V. (1957). Physical and chemical basis of combustion and gasification of fuel. Мoskov: Metallizdat, 40.
Google Scholar
[38]
Yanchenko, G.A. (1988). Thermal balance of the underground coal gasification process. Moskov: MGI, 42.
Google Scholar
[39]
Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. School of Underground Mining 2012, 201-208.
DOI: 10.1201/b13157-36
Google Scholar