The Method to Determine Material Constants in Ductile Fracture Criterion

Article Preview

Abstract:

In the metal plastic forming process, ductile fracture is an important factor influencing the forming properties of materials, and the ductile fracture criterion can effectively predict the moment and location when the material fracture. When using the ductile fracture criterion predicts the fracture of materials, the material constants expressed in integral form is an important index that affect the prediction accuracy. At present, the method to determine the material constants in the ductile fracture criterion is mostly combined with basic test. Therefore, the method to determine the material constants in ductile fracture criterion is introduced in this paper. These methods are divided into numerical calculation methods, finite element simulation method and the M-K theory model method.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

85-91

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Taupin, J. Breitling, W. T. Wu, T. Altan, Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, J. Mater. Process. Tech. 59 (1996) 68-78.

DOI: 10.1016/0924-0136(96)02288-1

Google Scholar

[2] H. S. Liu, M. W. Fu, Prediction and analysis of ductile fracture in sheet metal forming--Part II: Application of the modified Ayada criterion, Int. J. Damage. Mech. 23 (2014) 1189-1210.

DOI: 10.1177/1056789514541559

Google Scholar

[3] J. Hulka, P. Kubik, J. Petruška, Ductile Fracture Criteria Calibration and their Application, Adv. Mater. Res. 468-471 (2012) 1049-1052.

DOI: 10.4028/www.scientific.net/amr.468-471.1049

Google Scholar

[4] H. Takudaa, K. Morib, N. Hatta, The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals, J. Mater. Process. Tech. 95 (1999) 116-121.

DOI: 10.1016/s0924-0136(99)00275-7

Google Scholar

[5] Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solids. Struct. 49 (2012) 3605-3615.

DOI: 10.1016/j.ijsolstr.2012.02.016

Google Scholar

[6] L. P. Lei, J. Kim, B. S. Kang, Bursting failure prediction in tube hydroforming processes by using rigid–plastic FEM combined with ductile fracture criterion, Int. J. Mech. Sci. 44 (2002) 1411-1428.

DOI: 10.1016/s0020-7403(02)00045-0

Google Scholar

[7] C. Wang, J. Chen, C. Xia, F. Ren, J. Chen, A New Method to Calculate Material constants of Ductile Fracture Criteria for Advanced High-Strength Sheet Blanking, J. Mater. Eng. Perform. 23 (2014) 1296-1306.

DOI: 10.1007/s11665-013-0861-z

Google Scholar

[8] Y. Yang, Y. U. Zhongqi, L. I. Xuechun, Z. Sun, A New Ductile Fracture Criterion and Its Application to the Prediction of Forming Limit in Deep Drawing, J. Mater. Sci. Technol. 19 (2003) 217-219.

Google Scholar

[9] H. Liu, Y. Yang, Z. Yu, Z. Sun, Y. Wang, The application of a ductile fracture criterion to the prediction of the forming limit of sheet metals, J. Mater. Process. Tech. 209 (2009) 5443–5447.

DOI: 10.1016/j.jmatprotec.2009.04.020

Google Scholar

[10] M. Zhan, C. Gu, Z. Jiang, L. Hu, H. Yang, Application of ductile fracture criteria in spin-forming and tube-bending processes, Comp. Mater. Sci. 47 (2009) 353–365.

DOI: 10.1016/j.commatsci.2009.08.011

Google Scholar

[11] A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens, Evaluation of ductile fracture models for different metals in blanking, J. Mater. Process. Tech. 110 (2001) 312–323.

DOI: 10.1016/s0924-0136(00)00892-x

Google Scholar

[12] R. Hambli, M. Reszka, Fracture criteria identification using an inverse technique method and blanking experiment, Int. J. Mech. Sci. 44 (2002) 1349–1361.

DOI: 10.1016/s0020-7403(02)00049-8

Google Scholar

[13] Z. Zhang, X. Kong, M. A. Mirzai, K. Manabe, Determination of Material Constants in Ductile Fracture Criterion for Tubular Materials with Conical Flaring Test, Steel. Res. Int. 88 (2017) No. 5.

DOI: 10.1002/srin.201600258

Google Scholar

[14] Z. Marciniak, K. Kuczynski, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci. 9 (1967) 609-620.

DOI: 10.1016/0020-7403(67)90066-5

Google Scholar

[15] L. Lang, X. Yang, K. Liu, G. Cai, C. Guo, A calculating model of material constants in ductile fracture criterion and its applications, Acta Aeronaut. Astronaut. Sin. 36 (2015) 672-679.

Google Scholar

[16] X. Y. Yang, L. H. Lang, K. N. Liu, C. Guo, Modified MK model combined with ductile fracture criterion and its application in warm hydroforming, Trans. Nonferrous Met. Soc. China. 25 (2015) 3389-3398.

DOI: 10.1016/s1003-6326(15)63974-7

Google Scholar

[17] X. Guo, F. Ma, Q. Guo, X. Luo, N. Kim, K. Jin, A calculating method of tube constants of ductile fracture criteria in tube free bulging process based on M-K theory, Int. J. Mech. Sci. 128–129 (2017) 140–146.

DOI: 10.1016/j.ijmecsci.2017.04.012

Google Scholar