Mechanical and Thermal Properties of MgAl2O4-Y3Al5O12 Ceramic Composites

Article Preview

Abstract:

MgAl2O4-Y3Al5O12 ceramic composites were prepared using fused spinel and a Y2O3 micropowder as the raw materials. The microstructure and thermal properties of the composites were characterized by X-ray diffraction, scanning electron microscopy, laser flash diffusivity measurements. The mechanical properties were also determined. MgAl2O4-Y3Al5O12 ceramic composites are composed of spinel and garnet structures. The thermal expansion coefficients of MgAl2O4 and MgAl2O4-Y3Al5O12 ceramics are similar. The measured thermal diffusivity decreases gradually with increasing temperature. Thermal conductivity of the composites is in the range of 3.3-5.8 W∙m-1∙K-1 from 400°C to 900°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

255-260

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dericioglu, A. F. and Kagawa, Y., Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4. J. Eur. Ceram. Soc., 2003, 23, 951-959.

DOI: 10.1016/s0955-2219(02)00205-4

Google Scholar

[2] Shimada, M., Endo, T., Saito, T. and Sato, T., Fabrication of transparent spinel polylycrystalline materials. Mater. Lett., 1996, 28, 413-415.

DOI: 10.1016/0167-577x(96)00092-4

Google Scholar

[3] Guo, J., Lou, H., Zhao, H., Chai, D. and Zheng, X., Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A: Gen., 2004, 273, 75-82.

DOI: 10.1016/j.apcata.2004.06.014

Google Scholar

[4] Guo, J., Lou, H., Zhao, H., Wang, X. and Zheng, X., Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Mater. Lett., 2004, 58, 1920-(1923).

DOI: 10.1016/j.matlet.2003.12.013

Google Scholar

[5] Beauvy, M., Dalmasso, C., Thiriet-Dodane, C., Simeone, D. and Gosset, D., Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions. Nucl. Instrum. Meth. Phys. Res. B, 2006, 242, 557-561.

DOI: 10.1016/j.nimb.2005.08.148

Google Scholar

[6] Gusmano, G., Montesperelli, G., Traversa, E., Bearzotti, A., Petrocco, G., D'Amico, A. et al., Magnesium aluminium spine1 thin film as a humidity sensor. Sens. Actuators B, 1992, 7, 460-463.

DOI: 10.1016/0925-4005(92)80344-w

Google Scholar

[7] Mukhopadhyay, S., Ghosh, S., Mahapatra, M. K., Mazumder, R., Barick, P., Gupta, S. et al., Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable. Ceram. Int., 2002, 28, 719-729.

DOI: 10.1016/s0272-8842(02)00034-2

Google Scholar

[8] Ting C J, Lu H Y. Defect Reactions and the Controlling Mechanism in the Sintering of Magnesium Aluminate Spinel[J]. Journal of the American Ceramic Society, 1999, 82(4), 841-848.

DOI: 10.1111/j.1151-2916.1999.tb01844.x

Google Scholar

[9] Sarkar R, Das S K, Banerjee G. Effect of additives on the densification of reaction sintered and presynthesised spinels[J]. Ceramics International, 2003, 29(1), 55-59.

DOI: 10.1016/s0272-8842(02)00089-5

Google Scholar

[10] R.J. Bratton, Sintering and Grain-Growth Kinetics of MgAl2O4. J. Am. Ceram. Soc. 54 (3) (2010) 141-143.

Google Scholar

[11] K.P.R. Reddy, A.R. Cooper, Cheminform Abstract: Oxygen diffusion in magnisum aluminate spinel. J. Am. Ceram. Soc. 1981, 12 (40), 368-371.

Google Scholar

[12] Parthasarathy T A, Mah T, Keller K. High‐Temperature Deformation Behavior of Polycrystalline Yttrium Aluminum Garnet (YAG)[M]// Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2: Ceramic Engineering and Science Proceedings, Volume 12, Issue 9/10. 2008:1767-1773.

DOI: 10.1002/9780470313848.ch11

Google Scholar

[13] Harlan C J, Kareiva A, Macqueen D B, et al. Yttrium‐doped alumoxanes: A chimie douce route to Y3Al5O12(YAG) and Y4A12O9 (YAM)[J]. Advanced Materials, 1997, 9(1), 68-71.

DOI: 10.1002/adma.19970090116

Google Scholar

[14] Muliuoliene I, Jasaitis D, Kareiva A, et al. Sol-gel synthesis and characterization of mixed-metal garnet Y3ScAl3GaO12, (YSAGG)[J]. Journal of Materials Science Letters, 2003, 22(5), 349-351.

DOI: 10.1023/a:1022636924815

Google Scholar

[15] Isobe T, Omori M, Uchida S, et al. Consolidation of Al2O3-Y3Al5O12, (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature[J]. Journal of the European Ceramic Society, 2002, 22(14-15), 2621-2625.

DOI: 10.1016/s0955-2219(02)00125-5

Google Scholar

[16] R. Sarkar, H.S. Tripathi, A. Ghosh, Reaction sintering of different spinel compositions in the presence of Y2O3, Mater. Lett. 2004, 58 (16), 2186-2191.

DOI: 10.1016/j.matlet.2004.01.015

Google Scholar

[17] M. Pošarac, A.Devečerski, T.Volkov-Husović, B.Matović, D.M. Minić, The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel, Sci. Sinter. 2009, 41, 75-81.

DOI: 10.2298/sos0901075p

Google Scholar

[18] Turnbull D. Principles of solidification[M]. Wiley, (1964).

Google Scholar

[19] Wang S, Yamamoto F, Akatsu T, et al. Metastable precipitation in isothermally solidified YAG-alumina composites with off-eutectic composition[J]. Journal of Materials Science, 1999, 34(14), 3489-3494.

DOI: 10.4028/www.scientific.net/kem.161-163.117

Google Scholar

[20] Wang S, Akatsu T, Tanabe Y, et al. Eutectic precipitation in a solidified Y3Al5O12-MgAl2O4 composite[J]. Journal of Materials Science Letters, 1999, 18(16), 1325-1327.

Google Scholar

[21] Wang S, Akatsu T, Tanabe Y, et al. Divorced eutectic and interface characteristics in a solidified YAG-spinel composite with spinel-rich composition[J]. Journal of Materials Science, 2000, 35(11), 2757-2761.

DOI: 10.4028/www.scientific.net/kem.161-163.117

Google Scholar

[22] T. Ozawa, A. New, Method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 1965, 35, 1881-1886.

Google Scholar

[23] T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, J. Therm. Anal. 1970, 2, 301-324.

Google Scholar

[24] R. Berman, Thermal Conduction in Solids., Clarendon Press, Oxford, 1976, 45-101.

Google Scholar