Thermal Expansion of Ca1-xSrxZr4(PO4)6 Ceramics

Article Preview

Abstract:

Ceramics with the formula Ca1-xSrxZr4(PO4)6 (x=0.4, 0.45, 0.5, 0.55) have been synthesized by coprecipitation method, an. their structures, phase transitions, thermal expansion properties have been studied by differential sanning calorimetry, scanning electron microscope, X-ray diffraction and dilatometer. The results show that Ca1-xSrxZr4(PO4)6 ceramics sintered at 1400°C had good sintering condition. Unit cell volume basically had no change with substitution of Ca by Sr. The coprecipitation method saved energy and time. It was introduced to increase the relative density of Ca0.5Sr0.5Zr4(PO4)6 ceramic. The coefficient of thermal expansion was about 1.447×10-6/°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

389-394

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M. Bykov, A.I. Orlova, S.V. Tomilin, et al. Americium and plutonium in trigonal phosphates (NZP type) Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3]. Chem. 48 (2006) 234.

DOI: 10.1134/s1066362206030052

Google Scholar

[2] Y.F. Volkov, S.V. Tomilin, A.I. Orlova, et al. Actinide phosphates A(I)M(IV)(PO4)3, (A(I) = Li, K, or Rb; M(IV) = U, Np, or Pu). Russ. J. Inorg. Chem. 50 (2005) 1660.

Google Scholar

[3] A.I. Orlova, V.Yu. Volgutov, G.R. Castro, et al. Synthesis and crystal structure of NZP-type thorium-zirconium phosphate. Inorg. Chem. 48 (2009) 9046.

DOI: 10.1021/ic9013812

Google Scholar

[4] J. Alamo, R. Roy. Ultra low-expansion ceramics in the system Na2O-ZrO2P2O2-SiO2. J. Am. Ceram. Soc. 67 (1984) C78.

Google Scholar

[5] R. Roy, D.K. Agrawal, J. Alamo, et al. [CTP]: A new structural family of near-zero expansion ceramics. Mater. Res. Bull. 19 (1984) 471.

DOI: 10.1016/0025-5408(84)90108-9

Google Scholar

[6] G.E. Lenain, H.A. McKinstry, S.Y. Limaye, et al. Low thermal expansion of alkalizirconium phosphates. Mater. Res. Bull. 19 (1984) 1451-1456.

DOI: 10.1016/0025-5408(84)90258-7

Google Scholar

[7] S.Y. Limaye, D.K. Agrawal, H.A. Mckinstry. Synthesis and thermal expansion of MZr4P6O24 (M= Mg, Ca, Sr, Ba). J. Am. Ceram. Soc. 70 (1987) 232-236.

DOI: 10.1111/j.1151-2916.1987.tb04884.x

Google Scholar

[8] S.Y. Limaye, D.K. Agrawal, R. Roy, et al. Synthesis, sintering and thermal expansion of Cal-xSrxZr4P6O24 an ultra-low thermal expansion ceramic system. J. Mater. Sci. 26 (1991) 93-98.

DOI: 10.1007/bf00576037

Google Scholar

[9] B. Angadi, V.M. Jali, M.T. Lagare, et al. Synthesis and thermal expansion hysteresis of Ca1-xSrxZr4P6O24. Bull. Mater. Sci. 25 (2002) 191-196.

DOI: 10.1007/bf02711152

Google Scholar

[10] N. Chakraborty, D. Basu, W. Fischer. Thermal expansion of Ca1−xSrxZr4P6O24 ceramics. J.Eur. Ceram. Soc. 25 (2005) 1885-1893.

Google Scholar

[11] D.Y. Xie, Z.H. Wang, X.S. Liu, et al. Rapid synthesis of low thermal expansion materials of Ca1-xSrxZr4P6O24. Ceram. Int. 38 (2012) 3807-3813.

DOI: 10.1016/j.ceramint.2012.01.029

Google Scholar

[12] X.S. Liu, F. Li, W.B. Song, et al. Control of reaction processes for rapid synthesis of low-thermal-expansion Ca1-xSrxZr4P6O24 ceramics. J. Ceram. Int. 40 (2014) 6013-6020.

DOI: 10.1016/j.ceramint.2013.11.050

Google Scholar