[1]
X. Guo, X. Sun, X. Tian, G.J. Weng, Q.D. Ouyang, L.L. Zhu, Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic, Composite Structures, 157 (2016) 163-173.
DOI: 10.1016/j.compstruct.2016.08.025
Google Scholar
[2]
J. López-Puente, A. Arias, R. Zaera, C. Navarro, The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study, International Journal of Impact Engineering, 32 (2005).
DOI: 10.1016/j.ijimpeng.2005.07.014
Google Scholar
[3]
B. Cui, J. Hua Huang, J. Hui Xiong, H. Zhang, Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag–Cu–Ti–(Ti+C) mixed powder, Materials Science and Engineering: A, 562 (2013) 203-210.
DOI: 10.1016/j.msea.2012.11.031
Google Scholar
[4]
X. Dai, J. Cao, Z. Wang, X. Wang, L. Chen, Y. Huang, J. Feng, Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag-Cu composite filler: Microstructure and properties, Ceramics International, 43 (2017) 15296-15305.
DOI: 10.1016/j.ceramint.2017.08.069
Google Scholar
[5]
X. Li, J. Li, Z. Liao, F. Jin, F. Zhang, J. Xiong, Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds, Materials & Design, 99 (2016) 26-36.
DOI: 10.1016/j.matdes.2016.03.037
Google Scholar
[6]
W. Lu, Y. Shi, Y. Lei, X. Li, Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy, Materials & Design, 34 (2012) 509-515.
DOI: 10.1016/j.matdes.2011.09.004
Google Scholar
[7]
D. Fan, J. Huang, X. Zhao, J. Yang, S. Chen, X. Zhao, Joining of Cf/SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni)+Ti filler based on in-situ alloying concept, Ceramics International, 43 (2017) 4151-4158.
DOI: 10.1016/j.ceramint.2016.12.030
Google Scholar
[8]
S.N. Li, H.P. Xiong, N. Li, B.Q. Chen, C. Gao, W.J. Zou, H.S. Ren, Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding, Ceramics International, 43 (2017) 961-967.
DOI: 10.1016/j.ceramint.2016.10.026
Google Scholar
[9]
H. Gao, G. Sheikholeslami, G. Dearden, S.P. Edwardson, Reverse Analysis of Scan Strategies for Controlled 3D Laser Forming of Sheet Metal, Procedia Engineering, 183 (2017) 369-374.
DOI: 10.1016/j.proeng.2017.04.054
Google Scholar
[10]
Z. Shen, H. Liu, X. Wang, C. Wang, Improving the forming capability of laser dynamic forming by using rubber as a forming medium, Applied Surface Science, 369 (2016) 288-298.
DOI: 10.1016/j.apsusc.2016.02.063
Google Scholar
[11]
H. Shen, Z. Yao, J. Hu, Numerical analysis of metal/ceramic bilayer materials systems in laser forming, Computational Materials Science, 45 (2009) 439-442.
DOI: 10.1016/j.commatsci.2008.11.009
Google Scholar
[12]
M. Froend, F. Fomin, S. Riekehr, P. Alvarez, F. Zubiri, S. Bauer, B. Klusemann, N. Kashaev, Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application, Optics & Laser Technology, 96 (2017).
DOI: 10.1016/j.optlastec.2017.05.017
Google Scholar
[13]
S. Jović, S. Makragić, M. Jovanović, Parameters influence of laser forming on shaped surface by soft computing technique, Optik - International Journal for Light and Electron Optics, 142 (2017) 451-454.
DOI: 10.1016/j.ijleo.2017.04.089
Google Scholar
[14]
L. Zhu, Z.F. Xu, P. Liu, Y.F. Gu, Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy, Optics & Laser Technology, 98 (2018) 409-415.
DOI: 10.1016/j.optlastec.2017.08.027
Google Scholar
[15]
Q. Liu, X. Li, Y. Jiang, Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process, Vacuum, 141 (2017) 1-9.
DOI: 10.1016/j.vacuum.2017.03.009
Google Scholar