Temperature Field Simulation of TC4/SiC Bilayer in Laser Forming

Article Preview

Abstract:

Laser forming, an advanced technology widely used for the shaping and adjustment of metallic and non-metallic materials, can also be used to process metal/ceramic materials. Laser forming technique is based on the temperature gradient mechanism (TGM) and temperature distribution is the main factor that affects the laser forming process. In this study, the finite element method (FEM) has been applied to predict the temperature field of TC4/SiC metal/ceramic bilayer during the laser forming process. Temperature of different points in the upper surface of the metal material, interface with the two layers and the lower surface of the ceramic material has been calculated. Parameters like laser input power and laser scan-speed have been investigated. This study is aimed at providing data for the precise control of laser forming in the process of shaping and adjusting TC4/SiC bilayers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

946-951

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Guo, X. Sun, X. Tian, G.J. Weng, Q.D. Ouyang, L.L. Zhu, Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic, Composite Structures, 157 (2016) 163-173.

DOI: 10.1016/j.compstruct.2016.08.025

Google Scholar

[2] J. López-Puente, A. Arias, R. Zaera, C. Navarro, The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study, International Journal of Impact Engineering, 32 (2005).

DOI: 10.1016/j.ijimpeng.2005.07.014

Google Scholar

[3] B. Cui, J. Hua Huang, J. Hui Xiong, H. Zhang, Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag–Cu–Ti–(Ti+C) mixed powder, Materials Science and Engineering: A, 562 (2013) 203-210.

DOI: 10.1016/j.msea.2012.11.031

Google Scholar

[4] X. Dai, J. Cao, Z. Wang, X. Wang, L. Chen, Y. Huang, J. Feng, Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag-Cu composite filler: Microstructure and properties, Ceramics International, 43 (2017) 15296-15305.

DOI: 10.1016/j.ceramint.2017.08.069

Google Scholar

[5] X. Li, J. Li, Z. Liao, F. Jin, F. Zhang, J. Xiong, Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds, Materials & Design, 99 (2016) 26-36.

DOI: 10.1016/j.matdes.2016.03.037

Google Scholar

[6] W. Lu, Y. Shi, Y. Lei, X. Li, Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy, Materials & Design, 34 (2012) 509-515.

DOI: 10.1016/j.matdes.2011.09.004

Google Scholar

[7] D. Fan, J. Huang, X. Zhao, J. Yang, S. Chen, X. Zhao, Joining of Cf/SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni)+Ti filler based on in-situ alloying concept, Ceramics International, 43 (2017) 4151-4158.

DOI: 10.1016/j.ceramint.2016.12.030

Google Scholar

[8] S.N. Li, H.P. Xiong, N. Li, B.Q. Chen, C. Gao, W.J. Zou, H.S. Ren, Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding, Ceramics International, 43 (2017) 961-967.

DOI: 10.1016/j.ceramint.2016.10.026

Google Scholar

[9] H. Gao, G. Sheikholeslami, G. Dearden, S.P. Edwardson, Reverse Analysis of Scan Strategies for Controlled 3D Laser Forming of Sheet Metal, Procedia Engineering, 183 (2017) 369-374.

DOI: 10.1016/j.proeng.2017.04.054

Google Scholar

[10] Z. Shen, H. Liu, X. Wang, C. Wang, Improving the forming capability of laser dynamic forming by using rubber as a forming medium, Applied Surface Science, 369 (2016) 288-298.

DOI: 10.1016/j.apsusc.2016.02.063

Google Scholar

[11] H. Shen, Z. Yao, J. Hu, Numerical analysis of metal/ceramic bilayer materials systems in laser forming, Computational Materials Science, 45 (2009) 439-442.

DOI: 10.1016/j.commatsci.2008.11.009

Google Scholar

[12] M. Froend, F. Fomin, S. Riekehr, P. Alvarez, F. Zubiri, S. Bauer, B. Klusemann, N. Kashaev, Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application, Optics & Laser Technology, 96 (2017).

DOI: 10.1016/j.optlastec.2017.05.017

Google Scholar

[13] S. Jović, S. Makragić, M. Jovanović, Parameters influence of laser forming on shaped surface by soft computing technique, Optik - International Journal for Light and Electron Optics, 142 (2017) 451-454.

DOI: 10.1016/j.ijleo.2017.04.089

Google Scholar

[14] L. Zhu, Z.F. Xu, P. Liu, Y.F. Gu, Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy, Optics & Laser Technology, 98 (2018) 409-415.

DOI: 10.1016/j.optlastec.2017.08.027

Google Scholar

[15] Q. Liu, X. Li, Y. Jiang, Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process, Vacuum, 141 (2017) 1-9.

DOI: 10.1016/j.vacuum.2017.03.009

Google Scholar