The Effect of Soft Interlayers on the Behavior of a Four-Layer Titanium-Steel Composite at High Temperatures

Article Preview

Abstract:

The work presents the result of the finite element simulation of the titanium-steel composite with copper-niobium sublayer – VT6-VN2-M1-12Cr18Ni10Ti behavior under axial tension of a cylindrical sample by varying the relative thickness of the soft layer using a SIMULIA/Abaqus software package.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

152-157

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.R. McKenney, J.G. Banker, Explosion bonded metals for marine structural applications, Marine Technology Society Journal, 3(8) (1971) 285-292.

DOI: 10.5957/mt1.1971.8.3.285

Google Scholar

[2] J. Song, A. Kostka, M. Veehmayer, D. Raabe, Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, Materials Science and Engineering, 6(528) (2011) 2641-2647.

DOI: 10.1016/j.msea.2010.11.092

Google Scholar

[3] V.I. Lysak, S.V. Kuzmin, Explosive welding of metal layered composite materials, The E. O. Paton electric welding institute of the National Academy of Science of Ukraine, Kiev, (2003).

Google Scholar

[4] A.Elrefaey, W. Tillmann, Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer, Journal of materials processing technology, 209(5) (2009) 2746-2752.

DOI: 10.1016/j.jmatprotec.2008.06.014

Google Scholar

[5] Y.P. Trykov, L.M. Gurevich, V.G. Shmorgun, Titan-steel composites, Volgograd, VSTU, (2013).

Google Scholar

[6] Y.P. Trykov, L.M. Gurevich, D.V. Pronichev, Composite adapter, Volgograd VSTU, (2007).

Google Scholar

[7] Y.P. Trykov, L.M. Gurevich, Y.N. Kuskov, D.S. Samarskiy, O.S. Kiselev, A.I. Bogdanov, The strength of explosion welded joints with composite interlayers, Constructions of composite materials, 4 (2009) 17-25.

Google Scholar

[8] L. Gurevich, D. Pronichev, M. Trunov, Investigation of the rupture of Ti/steel laminated composite with soft interlayers, FME Transactions, 44 (2016) 16-21.

DOI: 10.5937/fmet1601016t

Google Scholar

[9] S. Nemat-Nasse, W. Guo, Flow stress of commercially pure niobium over a broad range of temperatures and strain rates, Materials Science and Engineering, 284(1) (2000) 202-210.

DOI: 10.1016/s0921-5093(00)00740-1

Google Scholar

[10] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures, Engineering Fracture Mechanics, 21 (1985) 31–48.

DOI: 10.1016/0013-7944(85)90052-9

Google Scholar

[11] G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 21 (1983) 541-547.

Google Scholar

[12] V.R. Ikkurthi, S. Chaturvedi, Use of different damage models for simulating impact-driven spallation in metal plates, International journal of impact engineering, 3(30) (2004) 275-301.

DOI: 10.1016/s0734-743x(03)00070-8

Google Scholar

[13] L. Gambirasio, E. Rizzi, On the calibration strategies of the Johnson–Cook strength model: discussion and applications to experimental data, Materials Science and Engineering, 610 (2014) 370-413.

DOI: 10.1016/j.msea.2014.05.006

Google Scholar