Hydrolytic Resistance of Na2O–SiO2–SnO2 Glass System

Article Preview

Abstract:

The influence of SnO2 on the chemical stability of sodium silicate glasses is investigated. The six glass compositions of ySnO2–37.9Na2O–(62.1-y)SiO2, y=1–8 mol.%, system were synthesized. Thermal behavior of the glasses was studied with the methods of dilatometry and DSC. It is shown that the hydrolytic resistance increases when growing the SnO2 concentration in the glass composition at constant Na2O content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

54-58

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Souquet, M. Duclot, Thin film lithium batteries, J. Solid State Ionics. 148 (2002) 375-379.

DOI: 10.1016/s0167-2738(02)00076-0

Google Scholar

[2] X.H. Yu, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144 (1997) 2, 524-532.

DOI: 10.1149/1.1837443

Google Scholar

[3] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, J. Current Opinion in Solid State and Materials Science. 16 (2012) 168-177.

DOI: 10.1016/j.cossms.2012.04.002

Google Scholar

[4] P. Adelhelm, P. Hartmann, From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries, Beilstein J. Nanotechnol. 6 (2015) 1016-1055.

DOI: 10.3762/bjnano.6.105

Google Scholar

[5] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, J. Chem. Rev. 114 (2014) 23, 11636-11682.

DOI: 10.1021/cr500192f

Google Scholar

[6] H. Kim, J.-S. Park, S.-H. Sahgong, S. Park, J.-K. Kim, Metal-free hybrid seawater fuel cell with an etherbased electrolyte, J. Mater. Chem. 2 (2014) 19584-19588.

DOI: 10.1039/c4ta04937c

Google Scholar

[7] T. Oshima, M. Kajita, Development of sodium – sulfur batteries, Int. J. Appl. Ceram. Technol. 1 (2004) 269.

Google Scholar

[8] T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya, I. Tanaka, Solid State Ionics for Batteries. (2005).

DOI: 10.1007/4-431-27714-5

Google Scholar

[9] A. Hayashi et al, J. Nat. Commun. 3 (2012) 856.

Google Scholar

[10] C.C. Hunter, M.D. Ingram, Na+-Ion conducting glasses, J. Solid State Ionics. 14 (1984) 1, 31.

DOI: 10.1016/0167-2738(84)90007-9

Google Scholar

[11] M.D. Ingram, Amorphous Materials: Ionic Transport in: K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings and Edward J. Kramer (eds), Encyclopedia of Materials: Science and Technology, Elsevier Ltd, the USA, 2001, 204-211.

DOI: 10.1016/b0-08-043152-6/00044-9

Google Scholar

[12] M.D. Ingram, Amorphous Materials: Mixed Alkali Effect in: K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings and Edward J. Kramer (eds), Encyclopedia of Materials: Science and Technology, Elsevier Ltd, the USA, 2001, 220-223.

DOI: 10.1016/b0-08-043152-6/00047-4

Google Scholar

[13] A. Paraskiva, M. Bokova, E. Bychkov, Na+ ion conducting glasses in the NaCl-Ga2S3-GeS2 system: A critical percolation regime, J. Solid State Ion. 299 (2017) 2-7.

DOI: 10.1016/j.ssi.2016.11.003

Google Scholar

[14] C. Ragoen, S. Sen, T. Lambricht, S. Godet, Effect of Al2O3 content on the mechanical and interdiffusional properties of ion-exchanged Na-aluminosilicate glasses, J. of Non-Cryst. Solids. 458 (2017) 129-136.

DOI: 10.1016/j.jnoncrysol.2016.12.019

Google Scholar

[15] M.G. Alexander, B. Riley, Ion-conducting glasses in the Na2O–Y2O3–SiO2 and Li2O–Y2O3–SiO2 systems, J. Solid State Ion. 18, 19 (1986) 478-482.

DOI: 10.1016/0167-2738(86)90163-3

Google Scholar

[16] M.G. Alexander, Effect of modifier cations on Na+ conductivity in sodium silicate glasses, J. Solid State Ion. 22 (1987) 257-260.

DOI: 10.1016/0167-2738(87)90042-7

Google Scholar

[17] Bhupinder Kaur, K. Singh, O.P. Pandey, Samita Thakur, Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses, J. of Non-Cryst. Solids. 465 (2017) 26-30.

DOI: 10.1016/j.jnoncrysol.2017.03.032

Google Scholar

[18] Fuji Funabiki, Tetsuji Yano, Shuichi Shibata, Masayuki Yamane, Electrical conductivity of Ag+/Na+ ion-exchanged titanosilicate glasses, J. Solid State Ion. 160 (2003) 281-288.

DOI: 10.1016/s0167-2738(03)00168-1

Google Scholar

[19] C. Calahooa, J.W. Zwanziger, The mixed modifier effect in ionic conductivity and mechanical properties for xMgO-(50-x)CaO-50SiO2 glasses, J. of Non-Cryst. Solids. 460 (2017) 6-18.

DOI: 10.1016/j.jnoncrysol.2017.01.017

Google Scholar

[20] G.V. Nechaev, S.G. Vlasova, I.S. Kovyazina, O.G. Reznitskich, Transport properties of the sodium-yttrium-silicate glasses, J. of Non-Cryst. Solids. 445-446 (2016) 30-33.

DOI: 10.1016/j.jnoncrysol.2016.04.044

Google Scholar

[21] I.S. Kovyazina, S.G. Vlasova, G.V. Nechaev, O.G. Reznitskich, Physical–chemical properties and conductivity of Na2O–SnO2–SiO2 glass systems, J. Glass physics and chemistry. 43 (2017) 2, 146-150.

DOI: 10.1134/s1087659617020080

Google Scholar