Constructing Isotherms of Oxygen Solubility in the Liquid Metal of the Cu-Na-K-O System

Article Preview

Abstract:

The thermodynamic modeling of phase equilibria in the liquid metal of the Cu–Na–O, Cu–K–O and Cu–Na–K–O systems in the temperature range of 1100–1300 °С was done. The calculations were performed using the methodology of constructing a surface of component solubility in the metal melt, which does not only allow us to calculate the isotherms of oxygen solubility in the molten metal, but also to link the changes in the composition of such molten metal with quality changes in the composition of the interaction products. The isotherms of the oxygen solubility in the liquid metal of the Cu–Na–O, Cu–K–O and Cu–Na–K–O systems were constructed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

568-574

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Sudavtsova, M.V. Mikhailovskaya, A.V. Kalmykov, Influence of lithium, boron, magnesium and yttrium on oxygen activity in the liquid copper, Melts. 1 (1987) 43-46.

Google Scholar

[2] O.V. Samoilova, G.G. Mikhailov, L.A. Makrovets, E.A. Trofimov, Interaction between lithium and oxygen in the liquid copper, Melts. 1 (2017) 83-92.

Google Scholar

[3] A.V. Kurdyumov, M.V. Pikunov, V.M. Chursin, E.L. Bibikov, Production of Castings from Non-ferrous Metal Alloys, Metallurgy Publ., Moscow, (1986).

Google Scholar

[4] Y. Takeda, G. Riveros, Y.-J. Park, A. Yazawa, Equilibria between liquid copper and soda slag, Trans. Japan Inst. Met. 27 (1986) 608-615.

DOI: 10.2320/matertrans1960.27.608

Google Scholar

[5] G. Riveros, Y.-J. Park, Y. Takeda, A. Yazawa, Distribution equilibria of arsenic and antimony between Na2CO3–Na2O–SiO2 melts and liquid copper, Trans. Japan Inst. Met. 28 (1987) 749-756.

DOI: 10.2320/matertrans1960.28.749

Google Scholar

[6] T.T. Stapurewicz, N.J. Themelis, Removal of antimony from copper by injection of soda ash, Metall. Trans. B. 21 (1990) 967-975.

DOI: 10.1007/bf02670267

Google Scholar

[7] Y. Cui, H. Matsuura, T. Hamano, F. Tsukihashi, Removal of antimony from liquid copper by using CuCl–Na2CO3 fluxes at 1423 K, ISIJ Intern. 48 (2008) 23-27.

DOI: 10.2355/isijinternational.48.23

Google Scholar

[8] G.G. Mikhailov, B.I. Leonovich, Yu.S. Kuznetsov, Thermodynamics of Metallurgical Processes and Systems, Moscow Institute of Steel and Alloys Publishing house, Moscow, (2009).

Google Scholar

[9] O.V. Samoilova, G.G. Mikhailov, E.A. Trofimov, L.A. Makrovets, Thermodynamic simulation and an experimental study of the possibility of synthesizing hardened Cu–Zr–O alloys, Russ. Metall. (Metally). 2016 (2016) 864-868.

DOI: 10.1134/s0036029516090135

Google Scholar

[10] S.A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P. Hayes, A.D. Pelton, Thermodynamic modeling of the Al2O3–CaO–CoO–CrO–Cr2O3–FeO–Fe2O3–MgO–MnO–NiO–SiO2–S system and applications in ferrous process metallurgy, VII International Conference on Molten Slags Fluxes and Salts. (2004).

DOI: 10.1002/chin.200308019

Google Scholar

[11] Sh. Yang, J. Li, L. Zhang, K. Peaslee, Z. Wang, Evolution of MgO·Al2O3 based inclusions in alloy steel during the refining process, Metall. Min. Ind. 2 (2010) 87-92.

Google Scholar

[12] M.T. Clavaguera-Mora, J.L. Touron, J. Rodríguez-Viejo, N. Clavaguera, Thermodynamic description of the Cu–O system, J. Alloys Compd. 377 (2004) 8-16.

DOI: 10.1016/j.jallcom.2004.01.031

Google Scholar

[13] R.A. Walker, J.N. Pratt, The solubility of copper in liquid sodium, J. Nuclear Mater. 32 (1969) 340-345.

Google Scholar

[14] A.D. Pelton, The Cu–Na (copper–sodium) system, Bull. Alloy Phase Diagr. 7 (1986) 25-27.

Google Scholar

[15] D. Hao, M. Bu, Y. Wang, Y. Tang, Q. Gao, M. Wang, B. Hu, Y. Du, Thermodynamic modeling of the Na–X (X = Si, Ag, Cu, Cr) systems, J. Min. Metall. B. 48 (2012) 273-282.

DOI: 10.2298/jmmb120113024h

Google Scholar

[16] A.D. Pelton, The Cu–K (copper–potassium) system, Bull. Alloy Phase Diagr. 7 (1986) 231.

Google Scholar

[17] Chemical Encyclopedia, Vol. 2, Soviet Encyclopedia Publ., Moscow, (1990).

Google Scholar

[18] H.A. Wriedt, The Na–O (sodium–oxygen) system, Bull. Alloy Phase Diagr. 8 (1987) 234-246.

Google Scholar

[19] O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, Pergamon Press Ltd Publ., Oxford, (1979).

Google Scholar

[20] J. Sangster, K–O (potassium–oxygen) system, J. Phase Equilib. Diffus. 34 (2013) 43-55.

DOI: 10.1007/s11669-012-0142-9

Google Scholar

[21] G.V. Samsonov, Physico-Chemical Properties of Oxides, Metallurgy Publ., Moscow, (1969).

Google Scholar

[22] A.B. Kulakov, A.N. Maljuk, M. Sofin, Ch.T. Lin, B. Keimer, M. Jansen, The Na–Cu–O phase diagram in the Cu-rich part, J. Solid State Chem. 177 (2004) 3274-3280.

DOI: 10.1016/j.jssc.2004.05.041

Google Scholar

[23] P. Coursol, A.D. Pelton, M. Zamalloa, Phase equilibria and thermodynamic properties of the Cu2O–CaO–Na2O system in equilibrium with copper, Metall. Mater. Trans. B. 34 (2003) 631-638.

DOI: 10.1007/s11663-003-0033-x

Google Scholar

[24] M.G. Barker, A.P. Dawson, The reactions of the oxides Cu2O and CuO with potassium monoxide and liquid potassium, J. Less-Common Met. 64 (1979) 127-134.

DOI: 10.1016/0022-5088(79)90140-1

Google Scholar

[25] H. Sabrowsky, U. Schröer, Representation and crystal structure of KNaO and RbNaO, Z. Naturforsch. B. 37 (1982) 818-819.

DOI: 10.1515/znb-1982-0704

Google Scholar

[26] J.P. Stone, C.T. Ewing, J.R. Spann, E.W. Steinkuller, D.D. Williams, R.R. Miller, High temperature vapor pressures of sodium, potassium, and cesium, J. Chem. Eng. Data. 11 (1966) 315-320.

DOI: 10.1021/je60030a007

Google Scholar