Thermionic Emission of Yttrium Dodecaboride Single Crystal

Article Preview

Abstract:

Experimental data on thermionic current density and electron work function of YB12 (100) at T = 1218 – 1978 K in high vacuum (p < 10-4 Pa) are first introduced. Temperature dependences of the thermionic current density and effective electron work function are presented without extrapolation to the zero-field currents because of the anomalous Schottky effect. The temperature dependences of theYB12 electron work function can be described by linear functions at certain temperature intervals. Preferential boron evaporation and additional ion bombardment by the residual gases ions and evaporated boron ions results in appearance of new phases depleted of boron on the YB12 surface. As a result, an YB4 – YB6 double layer on the YB12 single crystal surface has formed. The appearance of the new boride phases, depleted of boron, on the emitting surface causes an increase of thermionic current density compared with individual YB12.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

47-52

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Etourneau, Critical survey of rare-earth borides: Occurrence, crystal chemistry and physical properties, J. Less-Common Met. 110 (1985) 267 – 281.

DOI: 10.1016/0022-5088(85)90333-9

Google Scholar

[2] T. Tanaka, S. Okada, Y. Yu, Y. Ishizawa, A New Yttrium Boride: YB25, J. Solid State Chem. 133 (1997) 122 – 124.

DOI: 10.1006/jssc.1997.7328

Google Scholar

[3] T. Tanaka, S. Okada, Y. Ishizawa, A new yttrium higher boride: YB50. J. Alloy. Compd., 205 (1994) 281 – 284.

DOI: 10.1016/0925-8388(94)90802-8

Google Scholar

[4] T.B. Massalski (Editor-in-Chief), Binary Alloy Phase Diagrams, 2nd Ed. plus updates, ASM International, ASM CD-ROM, Ohio, USA (1996).

Google Scholar

[5] A. Taran, D. Voronovich, N. Shitsevalova, A. Levchenko, V. Filipov, S. Abashin, Phase transformations in lutetium borides at heating in vacuum, Solid State Phenom. 464 (2011) 172 – 174.

DOI: 10.4028/www.scientific.net/ssp.172-174.464

Google Scholar

[6] D. Voronovich, A. Taran, N. Shitsevalova, A. Levchenko, V. Filipov, Anisotropy of the erbium dodecaboride thermionic properties, Solid State Sci. 14 (2012) 1624 – 1628.

DOI: 10.1016/j.solidstatesciences.2012.04.009

Google Scholar

[7] D. Voronovich, A. Taran, N. Shitsevalova, A. Levchenko, V. Filipov, Thermal instability of holmium and thulium dodecaborides in vacuum, Solid State Phenom. 257 (2017) 152 – 155.

DOI: 10.4028/www.scientific.net/ssp.257.152

Google Scholar

[8] G. A. Meerson, N. N. Zhuravlev, R. M. Manelis, A. D. Runov, A. A. Stepanova, L. N. Grishina, N. V. Gramm, Some properties of yttrium borides, Izv. Akad. Nauk SSSR, Neorgan. Materialy 2 (1966) 608 – 616 [in Russian].

Google Scholar

[9] G. V. Samsonov, L. N. Okhremchuk, I. A. Podchenyaeva, V. S. Fomenko, V. V. Odintsov, Thermoemission of transition metal dodecaborides, Izv. Akad. Nauk SSSR, Neorgan. Materialy 10 (1974) 270 – 272 [in Russian].

Google Scholar

[10] J. Jaskie, D. Jacobson, Thermionic emission and surface composition of the Y – B system, J. Energy 5 (1981) 187 – 189.

DOI: 10.2514/3.62524

Google Scholar

[11] A. Czopnik, N. Shitsevalova, V. Pluzhnikov, A. Krivchikov, Yu. Paderno, Y. Onuki, Low temperature thermal properties of yttrium and lutetium dodecaborides. J. Phys.: Condens. Matter 17 (2005) 5971 – 5985.

DOI: 10.1088/0953-8984/17/38/003

Google Scholar

[12] L.N. Dobretsov, M.V. Gomoyunova, Emission Electronics, Israel Program for Scientific Translations, Jerusalem, 1971, 433 p.

Google Scholar

[13] K. Takahashi, S. Kunii, Single crystal growth and properties of incongruently melting TbB6, DyB6, HoB6, and YB6, J. Solid State Chem. 133 (1997) 198 – 200.

DOI: 10.1006/jssc.1997.7427

Google Scholar