Infrared Emittance and Electrical Properties of Ce4+ Doped Sm0.5Sr0.5CoO3 Ceramics

Article Preview

Abstract:

A series of Sm0.5Sr0.5CoO3-CeO2 ceramics formed by solid state-reaction method have been systematically investigated. The effects of doping the Sm site of Sm0.5Sr0.5CoO3 with Ce4+ on the structural, spectral reflectance, and thermal radiation properties were also explored. The modification of the initial phase takes place can be ascribed to the dissolution of Ce from initial CeO2 into the perovskite structure. The conductivity behavior depends critically on the Ce doping level, as was demonstrated that the recombination of holes (from Sm0.5Sr0.5CoO3) and electrons (from ceria ion) could decrease electrical conductivity. Sm0.5Sr0.5CoO3-CeO2 ceramics showed continuously adjustable conductivity and infrared emittance, opening up possible applications in solar thermal conversion or thermosensitive conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 294)

Pages:

45-50

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Guo, H. Wu, F. Puleo, and L.F. Liotta, B-Site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1−xSrxCo1−yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs, Catal. 5 (2015) 366-391.

DOI: 10.3390/catal5010366

Google Scholar

[2] X. Yang, X.D. Hao, T. Liu, F.M. Liu, B. Wang, C. Ma, and et al, CeO2-based mixed potential type acetone sensor using La1-xSrxCoO3 sensing electrode, Sens. Actuat. B: Chem. 269 (2018) 118-126.

DOI: 10.1016/j.snb.2018.04.160

Google Scholar

[3] Y. Duan, S.N. Sun, S.B. Xi, X. Ren, Y. Zhou, G.L. Zhang, and et al, Tailoring the Co 3d-O 2p Covalency in LaCoO3 by Fe Substitution To Promote Oxygen Evolution Reaction, Chem. Mater. 29 (2017) 10534-10541.

DOI: 10.1021/acs.chemmater.7b04534

Google Scholar

[4] P.M. Geffroy, S. Vedraine, D.B. Frédéric, S.K. Saha, A. Gheno, F. Rossignol, and et al, Electrical and Optical Properties of La1–xAxFe1–yByO3−δ Perovskite Films (with A = Sr and Ca, and B= Co, Ga, Ti): Toward Interlayers for Optoelectronic Applications, J. Phys. Chem. C, 120 (2016) 28583-28590.

DOI: 10.1021/acs.jpcc.6b09083

Google Scholar

[5] M. Oumezzine, O. Hassayoun, R. Bellouz, H.B. Sales, and E.K. Hli, On the role of disorder produced by manganese vacancy at the B site on the structural and magnetic properties of La0.67Ba0.33Mn1-xO3 nanocrystalline, J. Alloy. Compd. 729 (2017) 156-161.

Google Scholar

[6] Y.Q. Zhang, J.H. Li, Y.F. Sun, B. Hua, and J.L. Luo, Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs, ACS Appl. Mater. Inter. 8 (2016) 6457-6463.

DOI: 10.1021/acsami.5b11979

Google Scholar

[7] F.Deganello, L.F. Liotta, S.G. Leonardi, and G.Neri, Electrochemical properties of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide oxidation, Electrochim. Acta, 190 (2016) 939-947.

DOI: 10.1016/j.electacta.2015.12.101

Google Scholar

[8] W.W. Fan, Z. Sun, J.K. Wang, J. Zhou, K. Wu, and Y.H. Cheng, A new family of Ce-doped SmFeO3 perovskite for application in symmetrical solid oxide fuel cells, J. Power Sources, 312 (2016) 223-233.

DOI: 10.1016/j.jpowsour.2016.02.069

Google Scholar

[9] J. Zhu, D. Xiao, J. Li, X.G. Yang, and K.M. Wei, Effect of Ce and MgO on NO decomposition over La1−x–Cex–Sr–Ni–O/MgO, Catal. Commun. 7 (2006) 432-435.

DOI: 10.1016/j.catcom.2005.12.026

Google Scholar

[10] J. Kirchnerova, M. Alifanti, and B. Delmon, Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion, Appl. Catal. A: Gen. 231 (2002) 65-80.

DOI: 10.1016/s0926-860x(01)00903-6

Google Scholar

[11] C. Wang, M.S. Xiao, J.F. Hu, L. Chen, C.J. Zhang, J.S. Lan, H. Yu, and D.S. Liu, Conductivity and Infrared Absorption of La1−xBaxCoO3 Conductive Ceramics,, J. Solid State Chem. 137 (1998) 211-213.

DOI: 10.1006/jssc.1998.7702

Google Scholar

[12] E. Konysheva, R. Blackley and T. S. Irvine John, Conductivity Behavior of Composites in the La0.6Sr0.4CoO3±δ - CeO2 System: Function of Connectivity and Interfacial Interactions,, Chem. Mater. 22 (2010) 4700-4711.

DOI: 10.1021/cm100976q

Google Scholar

[13] F.L. Du, N. Wang, D.M. Zhang, and Y.Z. Shen, Preparation, characterization and infrared emissivity study of Ce-doped ZnO films,, J. Rare Earth. 28 (2010) 391-395.

DOI: 10.1016/s1002-0721(09)60118-6

Google Scholar

[14] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, V.Ganesan, and C.H. Bhosale, Effect of precursor concentration on the properties of ITO thin films,, J. Alloy. Compd. 464 (2008) 387-392.

DOI: 10.1016/j.jallcom.2007.09.138

Google Scholar

[15] K. Shimazaki, S. Tachikawa, A. Ohnishi, and Y. Nagasaka, Radiative and Optical Properties of La1−xSrxMnO3 (0≤x≤0.4) in the Vicinity of Metal–Insulator Transition Temperatures from 173 to 413K,, Int. J. Thermophys. 22 (2001) 1549-1561.

Google Scholar