[1]
A. Tamrazyan, Reduce the Impact of Dynamic Strength of Concrete under Fire Conditions on Bearing Capacity of Reinforced Concrete Columns, Applied Mechanics and Materials. 475-476, 2014, 1563-1566.
DOI: 10.4028/www.scientific.net/amm.475-476.1563
Google Scholar
[2]
P. Bamonte, F. Lo Monte, Reinforced concrete columns exposed to standard fire: Comparison among different constitutive models for concrete at high temperature, Fire Safety Journal. 71, 2015, 310 – 323.
DOI: 10.1016/j.firesaf.2014.11.014
Google Scholar
[3]
L. Bodnarová, J. Válek, L. Sitek, J. Foldyna, Effect of high temperatures on cement composite materials in concrete structures. Acta Geodynamica et Geomaterialia. 10, 2013, 173-180.
DOI: 10.13168/agg.2013.0017
Google Scholar
[4]
Fédération internationale du béton and Taerwe L. Fire Design of Concrete Structures: Structural Behaviour and Assessment: State-of-the-art Report. Bulletin (Fédération Internationale Du Béton). Vol. 46. Lausanne, Switzerland. (2008).
DOI: 10.3151/coj.56.3_267
Google Scholar
[5]
R. Štoudek, T. Trčka, M. Matysík, T. Vymazal, I. Plšková, Acoustic and Electromagnetic Emission of Lightweight Concrete with Polypropylene Fibers, Materiali in tehnologije. 50(4), 2016, 547-552.
DOI: 10.17222/mit.2015.138
Google Scholar
[6]
V. K. Kodur, A. Agrawal, Critical Factors Governing the Residual Response of Reinforced Concrete Beams Exposed to Fire, Fire Technology. 52 (4), 2016, 967-993.
DOI: 10.1007/s10694-015-0527-5
Google Scholar
[7]
P. R. Prakash, G. Srivastava, Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method, Advances in Structural Engineering. 21(7), 2018, 1036-1050.
DOI: 10.1177/1369433217737118
Google Scholar
[8]
M. Matysík, I. Plšková, Z. Chobola Assessment of the Impact-echo Method for Monitoring the Long-standing Frost Resistance of Ceramic Tiles. Materiali in tehnologije. 49 (4), 2015, 639-643.
DOI: 10.17222/mit.2014.155
Google Scholar
[9]
Yi Li, Xinzheng Lu, Hong Guan, Mingjian Ying, Weiming Yan, A Case Study on a Fire-Induced Collapse Accident of a Reinforced Concrete Frame-Supported Masonry Structure, Fire Technology, 52 (3), 2016, 707-729.
DOI: 10.1007/s10694-015-0491-0
Google Scholar
[10]
P. Misák, P. Possl, D. Kocáb, I. Rozsypalová, T. Stavař, Evaluation of permeability tests of surface layer of concrete of various composition, Key Engineering Materials. 714, 2016, 171-178.
DOI: 10.4028/www.scientific.net/kem.714.171
Google Scholar
[11]
Zhi-guo Yan, Yi Shen, He-hua Zhu, Xiao-jun Li, Yong Lu, Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature, Fire Safety Journal. 71, 2015, 86 – 99.
DOI: 10.1016/j.firesaf.2014.11.009
Google Scholar
[12]
S. O. Gade, B. B. Alaca, M. G. R. Sause, Determination of Crack Surface Orientation in Carbon Fibre Reinforced Polymers by Measuring Electromagnetic Emission, Journal of Nondestructive Evaluation, 36 (2), (2017).
DOI: 10.1007/s10921-017-0403-y
Google Scholar
[13]
P. Turkowski, M. Łukomski, P. Sulik, P. Roszkowski, Fire Resistance of CFRP-strengthened Reinforced Concrete Beams under Various Load Levels, Procedia Engineering. 172, 2017, 1176-1183.
DOI: 10.1016/j.proeng.2017.02.137
Google Scholar