Structural Formation in the Zone of Interaction under Laser Processing of Bimetal M1 + VT1-0

Article Preview

Abstract:

The processes of structure formation in the bimetal М1 + VТ1-0 after laser treatment from the side of copper are studied. The structure, phase and chemical composition of the interaction zone was investigated, the factors influencing the change in its hardness were determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

772-777

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kenneth G. Budinski, Tribological properties of titanium allous, Wear, 51(2) (1991) 203-217.

Google Scholar

[2] С. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (WileyVCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

Google Scholar

[3] P.N. Belkin, Plasma electrolytic saturation of titanium and its alloys with light elements, Journal of Surfac Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 10 (2016) 516-535.

DOI: 10.1134/s1027451016030058

Google Scholar

[4] P.N. Belkin, Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements, Journal of Materials Engineering and Performance, 26 (2017) 2404-2410.

DOI: 10.1007/s11665-017-2655-1

Google Scholar

[5] J.H. Abboud, Laser surface alloying of titanium with aluminium, Journal of materials science letters, 9 (1990) 308-310.

Google Scholar

[6] V.M. Savostikov, Physical-mechanical and tribotechnical properties of titanium alloys with Ti–C–Mo–S gradient antifriction coatings, Russian Physics Journal, 55 (2013) 1056-1062.

DOI: 10.1007/s11182-013-9922-x

Google Scholar

[7] Olga Lenivtseva, Structure and wear resistance of Ti-TiC-TiB layers obtained by non-vacuum electron beam cladding, MATEC Web of Conferences 129, (2017).

DOI: 10.1051/matecconf/201712902022

Google Scholar

[8] R. Yazdi, S.F. Kashani-Bozorg, Mater. Chem. Phys. 152, 147-157 (2015).

Google Scholar

[9] W.F. Wang, L.S. Jin, J.G. Yang, F.J. Sun, Surf. Coat. Technol. 236, 45-51 (2013).

Google Scholar

[10] V. Amigó, J.J. Candel, P. Franconetti, Materials Science Forum, 299-304 (2012).

Google Scholar

[11] J.J. Candel, V. Amigó, J.A. Ramos, D. Busquets, Surf. Coat. Technol. 204, 3161-3166 (2010).

Google Scholar

[12] Y. Chen, D. Liu, F. Li, L. Li, Surf. Coat. Technol. 202, 4780-4787 (2008).

Google Scholar

[13] V. Ocelík, D. Matthews, J.T.M. De Hosson, Surf. Coat. Technol. 197, 303-315 (2005).

Google Scholar

[14] F. Weng, C. Chen, H. Yu, Mater Design, 58, 412- 425 (2014).

Google Scholar

[15] O. Lenivtseva, E. Golovin, V. Samoylenko, D. Mul, D. Golovin, Advanced Materials Research, 1040, 784-789 (2014).

DOI: 10.4028/www.scientific.net/amr.1040.784

Google Scholar

[16] O.G. Lenivtseva, N.S. Belousova, E.A. Lozhkina, T.A. Zimoglyadova, V.V. Samoylenko, L.V. Chuchkova, IOP Conference Series: Materials Science and Engineering, 156, Art. 0120212016 (2016).

DOI: 10.1088/1757-899x/156/1/012021

Google Scholar

[17] Information on: https://www.scientific.net/KEM.743.

Google Scholar

[18] Information on: http://iopscience.iop.org/article/10.1088/1755-1315/87/9/092024/pdf.

Google Scholar

[19] V.G. Shmorgun, Effect of Contact Melting Regime on Structure and Properties of Coatings of the Copper–Titanium System, Metallurgist, 60(5-6) (2016) 635-640.

DOI: 10.1007/s11015-016-0343-2

Google Scholar

[20] V.G. Shmorgun, L.M. Gurevich, O.V. Slautin, Nado, V.N. Arisawa, D.A. Evstropov, Formation of Ti-Cu-Based Intermetallic Coatings on the Surface of the Copper During Contact Melting, Metallurgist, 59(9-10) (2016) 974-979.

DOI: 10.1007/s11015-016-0203-0

Google Scholar