Study of the Influence of Technological Factors on the Surface Structure of Aluminum 6000 Series Alloys Ingots

Article Preview

Abstract:

The structure and chemical composition of the surface layers of aluminum 6000-series alloys after crystallization and homogenization annealing at 580 °C were investigated. It is shown that the state of the surface significantly depends on the presence of impurities in the coolant of the crystallizer, which deteriorate the continuity of the oxide film, which leads to the formation of light color of individual parts of the ingot surface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

938-942

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pierluigi Traverso, ElisaCanepa, A review of studies on corrosion of metals and alloys in deep-seaenvironment, Ocean Engineering, 87 (2014)10–15.

Google Scholar

[2] B.A. Shaw, M.M. McCosby, A.M. Abdullah, and H.W. Pickering, The Localized Corrosion of Al 6XXX Alloys JOM the journal of the Minerals Metals Materials Society, 53(7) (2001) 42-46.

DOI: 10.1007/s11837-001-0087-7

Google Scholar

[3] A. Valdes and H.W. Pickering, Advances in Localized Corrosion, ed. H. Isaacs et al. Houston, TX : NACE, (1990).

Google Scholar

[4] A.M. Abdullah, B.A. Shaw, and H.W. Pickering, Symp. on Corrosion and Corrosion Prevention of Low Density Metals and Alloys, ed. R.G. Buchheit and B.A. Shaw (Pennington, NJ: The Electrochem. Soc., 2001).

Google Scholar

[5] C. Vargel, Corrosion of Aluminium, Elsevier (2004).

Google Scholar

[6] Z. Szklarska-Smialowska, Pitting corrosion of aluminium, Corrosion science 41 (1998) 1743-1767.

DOI: 10.1016/s0010-938x(99)00012-8

Google Scholar

[7] J.O. Park, C.H. Paik, Y.H. Huang, R.C. Alkire, Influence of Fe-rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl, Journal of the electrochemical society 146 (1999) 517-523.

DOI: 10.1149/1.1391637

Google Scholar

[8] R. Ambat, A.J. Davenport, G.M. Scamans, A. Afseth, Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium, Corrosion science 48 (2006) 3455-3471.

DOI: 10.1016/j.corsci.2006.01.005

Google Scholar

[9] K. Goto, Y. Shimizu, G. Ito, Effect of metallurgical factors on the initiation of pitting corrosion of aluminium in fresh water, Transactions of national research institute for metals, 22:4 (1980) 86-92.

Google Scholar

[10] P. McIntyre, Corrosion and associated costs in the UK offshore sector, Marine, Corrosion Club Meeting, (1999).

Google Scholar

[11] M.C. Reboul and B. Baroux, Metallurgical aspects of corrosion resistance of aluminium alloys Materials and Corrosion, 62, No. 3, (2011).

DOI: 10.1002/maco.201005650

Google Scholar

[12] Z. Nikseresht, F. Karimzadeh, M.A. Golozar, M. Heidarbeigy, Effect of heat treatment on microstructure and corrosion behavior of Al6061 alloy weldment Materials and Design, 31 (2010) 2643–2648.

DOI: 10.1016/j.matdes.2009.12.001

Google Scholar

[13] T. Oppenheim, S. Tewfic, On the correlation of mechanical and physical properties of 6061-T6 and 7249-T76 aluminum alloys. Eng Fail Anal, 14:218 (2007) 25.

DOI: 10.1016/j.engfailanal.2005.10.013

Google Scholar

[14] G.A. Edvards, K. Stiller, The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46 (1998) 893–904.

Google Scholar

[15] V. Guillaumin, G. Mankowski Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros Sci, 42:105 (2000) 25.

DOI: 10.1016/s0010-938x(99)00053-0

Google Scholar

[16] E.H. Hollingsworth, H.Y. Hunsicker, Corrosion of aluminium and aluminium alloys. Metals Hand Book; (1998).

Google Scholar

[17] W.J. Liang, P.A. Rometsch L.F. Cao, N. Birbilis, General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu Corrosion Science 76 (2013) 119–128.

DOI: 10.1016/j.corsci.2013.06.035

Google Scholar

[18] F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutz, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys, Electrochimica Acta 54 (2008) 844–855.

DOI: 10.1016/j.electacta.2008.05.078

Google Scholar

[19] M.H. Larsen, J.C. Walmsley, O. Lunder, K. Nisancioglua, Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys, J. Electrochem. Soc. 157 (2010) C61–C68.

DOI: 10.1149/1.3261804

Google Scholar

[20] Kamal El-Menshawy, Abdel-Wahab A. El-Sayed, Mohammed E. El-Bedawy, Hafez A. Ahmed, Saed M. El-Raghy, Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061 Corrosion Science 54 (2012) 167–173.

DOI: 10.1016/j.corsci.2011.09.011

Google Scholar

[21] G. Svenningsen, M. Hurlen Larsen, J-E. Lein, J-H. Nordlien, K. Nisancioglu, Intergranular Corrosion of Extruded AA6000-Series Model Alloys Proceedings of the 9th International Conference on Aluminium Alloys (2004).

DOI: 10.1016/j.corsci.2004.11.025

Google Scholar