[1]
Standish N, Huang W.Microwave application in carbothermic reduction of iron ores.ISIJ International, 1991, 31(3): 241-245.
DOI: 10.2355/isijinternational.31.241
Google Scholar
[2]
Y X Hua. Microwave-assisted Carbothermic Reduction of Limonits. ACTA Metallurgica Sinica, 1996, 9(3):497-501.
Google Scholar
[3]
Marcelo Breda Mourao,Ivan Parreiras de Carvalho,Jr, Cyro Takano.Carbothermic reduction by microwave heating. ISIJ International, 2001, 41:S27-S30.
DOI: 10.2355/isijinternational.41.suppl_s27
Google Scholar
[4]
A Saidi, K Azari. Carbothermic Reduction of zinc oxide concentrate by microwave. J. Master. Sci.Technol, 2005, 21(5):724-728.
Google Scholar
[5]
Ying LEI, Yu LI, Jinhui PENG, etc. Carbothermic Reduction of Panzhihua Oxidized Ilmenite in a Microwave Field. ISIJ International, 2011, 51(3):337–343.
DOI: 10.2355/isijinternational.51.337
Google Scholar
[6]
Ishizaki K, Stir M, Gozzo F, et al. Magnetic microwave heating of magnetite–carbon black mixtures. Materials Chemistry and Physics, 2012, 134(2-3): 1007-1012.
DOI: 10.1016/j.matchemphys.2012.03.104
Google Scholar
[7]
Amini A, Ohno K, Maeda T, et al. Effect of the Ratio of Magnetite Particle Size to Microwave Penetration Depth on Reduction Reaction Behaviour by H2. Scientific reports, 2018, 8(1): 15023.
DOI: 10.1038/s41598-018-33460-5
Google Scholar
[8]
Agrawal S, Rayapudi V, Dhawan N. Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values. Minerals Engineering, 2019, 132: 202-210.
DOI: 10.1016/j.mineng.2018.12.012
Google Scholar
[9]
Motoyasu Sato, Akihiro Matsubara and Sadatsugu Takayama etc. Experimental Analysis for Thermally Non -equilibrium State under Microwave Irradiation – A Green Process for Steel Making[C]. Sohn International Symposium Advanced Processing of Metals and Materials Volume 5- New, Improved and Existing Technologies: Iron and Steel and Recycling and Waste Treatment.
DOI: 10.1109/plasma.2008.4590830
Google Scholar
[10]
Hu Rongzu,Shi Qizhen. Thermal Analysis Kinetics. Beijing:Science Press,2001(In Chinese).
Google Scholar
[11]
M.J. Tiernan, P.A. Barnes, G.M.B. Parkes, Reduction of Iron Oxide Catalysts: The Investigation of Kinetic Parameters Using Rate Perturbation and Linear Heating Thermoanalytical Techniques. J. Phys. Chem. B, 2001, 105:220-226.
DOI: 10.1021/jp003189+
Google Scholar
[12]
S.P. Trushenski,K.Li, W.O. Philbrook, Non-Topochemical reduction of iron oxides. Metal. Trans, 1974, 5:1149-1154.
DOI: 10.1007/bf02644326
Google Scholar
[13]
A. Pineau, N. Kanari, I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite.Thermochimica Acta,2006,447:89-100.
DOI: 10.1016/j.tca.2005.10.004
Google Scholar
[14]
Athayde M, Cota M, Covcevich M. Iron ore pellet drying assisted by microwave: A kinetic evaluation[J]. Mineral Processing and Extractive Metallurgy Review, 2018, 39(4): 266-275.
DOI: 10.1080/08827508.2017.1423295
Google Scholar
[15]
Fukushima J, Takizawa H. In situ spectroscopic analysis of the carbothermal reduction process of iron oxides during microwave irradiation. Metals, 2018, 8(1): 49.
DOI: 10.3390/met8010049
Google Scholar