Determination of Cadmium Ions Using Schiff-Base Modified Carbon Paste Electrode: A Box-Behnken Design Approach

Article Preview

Abstract:

Being one of the hazardous contaminants in the environment, continuous exposure to cadmium ions (Cd (II)) has been shown to severely affect the well being of both humans and animals. Therefore, development of a highly sensitive method to detect trace amounts of such substance in the environment acquires scientific pertinence. In this present work, carbon paste electrode modified with bis (benzylidene) ethelynediamine (BBE-CPE) was used for the determination of Cd (II) using square wave anodic stripping voltammetric (SWASV) technique. A response surface methodological approach employing the Box-Behnken design (BBD) based on four relevant variables; pH, deposition time, percentage ligand and deposition potential was used for optimizing the experimental conditions for detecting such ions. Under optimized conditions (supporting electrolyte: pH 4.5, deposition time: 350 s, ligand graphite composition: 6%, deposition potential: ‒1.1 V), a linear response over a wide range of Cd (II) concentrations (1–500 μg L−1) with low detection limit (0.4 μg L-1) and quantification limit (1.4 μg L-1) were observed with deposition time being the most impacting factor. Pertinently, the BBE-CPE developed here exhibited exceptional recovery of Cd (II) concentrations in the sea and tap water samples, comparable with that observed under simulated conditions, suggesting its applicability for a variety of real samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

231-246

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Zhang, Z. Liu, S. Zhu, J. Chen, G. Xu, Electrochem. Commun. 2010, 12, 1291-1293.

Google Scholar

[2] A. A. Gouda, A. S. Amin, Spectrochim. Acta A 2014, 120, 88-96.

Google Scholar

[3] N. G. Beck, R. P. Franks, K. W. Bruland, Anal. Chim. Acta 2002, 455, 11-22.

Google Scholar

[4] V. N. Losev, O. V. Buyko, A. K. Trofimchuk, O. N. Zuy, Microchem. J. 2015, 123, 84-89.

Google Scholar

[5] S. L. Zhao, F. S. Chen, J. Zhang, S. B. Ren, H. D. Liang, S. S. Li, J. Ind. Eng. Chem. 2015, 27, 362-367.

Google Scholar

[6] A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, M. Rezaeivala, Anal. Chim. Acta 2013, 771, 21-30.

Google Scholar

[7] aB. L. Li, Z. L. Wu, C. H. Xiong, H. Q. Luo, N. B. Li, Talanta 2012, 88, 707-710; bJ. H. Luo, X. X. Jiao, N. B. Li, H. Q. Luo, J. Electroanal. Chem. 2013, 689, 130-134.

Google Scholar

[8] A. Giacomino, O. Abollino, M. Lazzara, M. Malandrino, E. Mentasti, Talanta 2011, 83, 1428-1435; bA. M. Beltagi, E. M. Ghoneim, M. M. Ghoneim, Int. J. Environ. Anal. Chem. 2011, 91, 17-32.

DOI: 10.1016/j.talanta.2010.11.033

Google Scholar

[9] K. Gibbon-Walsh, P. Salaün, C. M. G. van den Berg, Anal. Chim. Acta 2010, 662, 1-8; bM. C. Teixeira, E. d. F. L. Tavares, A. A. Saczk, L. L. Okumura, M. d. G. Cardoso, Z. M. Magriotis, M. F. de Oliveira, Food Chem. 2014, 154, 38-43.

Google Scholar

[10] C. R. T. Tarley, V. S. Santos, B. E. L. Baêta, A. C. Pereira, L. T. Kubota, J. Hazard. Mater. 2009, 169, 256-262.

Google Scholar

[11] P. R. d. Oliveira, A. C. Lamy-Mendes, J. L. Gogola, A. S. Mangrich, L. H. Marcolino Junior, M. F. Bergamini, Electrochim. Acta 2015, 151, 525-530; bF. E. Salih, A. Ouarzane, M. E. L. Rhazi, Arab J. Chem. (2015).

DOI: 10.1016/j.electacta.2014.11.057

Google Scholar

[12] Y. Wang, Y. Wu, J. Xie, X. Hu, Sensor Actuat. B-Chem 2013, 177, 1161-1166; bF. Fathirad, D. Afzali, A. Mostafavi, T. Shamspur, S. Fozooni, Electrochim. Acta 2013, 103, 206-210; cM. R. Ganjali, N. Motakef-Kazami, F. Faridbod, S. Khoee, P. Norouzi, J. Hazard. Mater. 2010, 173, 415-419.

DOI: 10.1016/j.electacta.2013.03.162

Google Scholar

[13] A. Afkhami, H. Ghaedi, T. Madrakian, M. Rezaeivala, Electrochim. Acta 2013, 89, 377-386; bA. Afkhami, H. Bagheri, H. Khoshsafar, M. Saber-Tehrani, M. Tabatabaee, A. Shirzadmehr, Anal. Chim. Acta 2012, 746, 98-106; cM. Ghiaci, B. Rezaei, M. Arshadi, Sensor Actuat. B-Chem 2009, 139, 494-500.

DOI: 10.1016/j.aca.2012.08.024

Google Scholar

[14] G. Bia, L. Borgnino, P. I. Ortiz, V. Pfaffen, Sensor Actuat. B-Chem 2014, 203, 396-405; bS. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, W. N. L. dos Santos, Anal. Chim. Acta 2007, 597, 179-186.

DOI: 10.1016/j.aca.2007.07.011

Google Scholar

[15] N. Mohamad, F. Huyop, H. Y. Aboul-Enein, N. A. Mahat, R. A. Wahab, Biotechnol Biotechnol Equip. 2015, 29, 732-739; bR. A. Wahab, M. Basri, R. N. Z. R. A. Rahman, A. B. Salleh, M. B. A. Rahman, N. Chaibakhsh, T. C. Leow, Biotechnol Biotechnol Equip. 2014, 28, 1065-1072.

DOI: 10.1080/13102818.2015.1034177

Google Scholar

[16] N. Chaibakhsh, M. B. A. Rahman, M. Basri, Chem. Prod. Process Model. 2012, 7.

Google Scholar

[17] Y. Zhao, X.-m. Hu, B.-h. Jiang, L. Li, Desalination 2014, 336, 64-71.

Google Scholar

[18] N. H. C. Marzuki, F. Huyop, H. Y. Aboul-Enein, N. A. Mahat, R. A. Wahab, Biotechnol Biotechnol Equip. 2015, 1-15.

Google Scholar

[19] W. Liu, P. Yin, X. Liu, R. Qu, Bioresour. Technol. 2014, 173, 266-271.

Google Scholar

[20] S. Dwivedi, S. Sharma, R. Mishra, Adv. Manuf. 2014, 2, 303-317.

Google Scholar

[21] S. Abbasi, A. Bahiraei, F. Abbasai, Food Chem. 2011, 129, 1274-1280.

Google Scholar

[22] S. Guo, X. Wu, J. Zhou, J. Wang, B. Yang, B. Ye, J. Electroanal. Chem. 2011, 655, 45-49.

Google Scholar

[23] A. Ourari, H. Nora, C. Noureddine, A. Djouhra, Electrochim. Acta 2015, 170, 311-320.

Google Scholar

[24] A. Afkhami, T. Madrakian, S. J. Sabounchei, M. Rezaei, S. Samiee, M. Pourshahbaz, Sensor Actuat. B-Chem 2012, 161, 542-548.

Google Scholar

[25] J. Zolgharnein, T. Shariatmanesh, A. Babaei, Sensor Actuat. B-Chem 2013, 186, 536-544.

Google Scholar