Multi-Walled Carbon Nanotubes Functionalized with Carboxyl and Amide for Acetone detection at Room Temperature

Article Preview

Abstract:

The functionalization of multi-walled carbon nanotubes (CNT) with amide group is reported as an alternative to enhance response time, recovery time and sensitivity of detecting acetone gas. We have fabricated an interdigitated transducer (IDT) deposited with amide-functionalized CNT. The elemental compositional analysis was characterized using Energy Dispersion X-ray spectroscopy and CHNOS elemental analyzer. The detection of acetone gas was performed in room temperature and digital multimeter was employed to record the changes of resistivity of IDT upon exposure of acetone. Results showed that amide functional group increases sensitivity, shortens the response time as well as recovery time of the sensor.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

195-201

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Xie, C. Sheng, X. Chen, X. Wang, Z. Li, J. Zhou, Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde, Sensors Actuators, B Chem. 168 (2012) 34–38.

DOI: 10.1016/j.snb.2011.12.112

Google Scholar

[2] S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, H. Lee, Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes, Sci. Rep. 3 (2013) 1868.

DOI: 10.1038/srep01868

Google Scholar

[3] W. Huang, W. Wang, C. Chen, M. Li, L. Peng, H. Li, J. Liu, K. Hou, H. Li, Long-term sub second-response monitoring of gaseous ammonia in ambient air by positive inhaling ion mobility spectrometry, Talanta 175 (2017) 522–527.

DOI: 10.1016/j.talanta.2017.07.076

Google Scholar

[4] A. Thamri, H. Baccar, C. Struzzi, C. Bittencourt, A. Abdelghani, E. Llobet, MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs, Sci. Rep. 6 (2016) 1–12.

DOI: 10.1038/srep35130

Google Scholar

[5] S. Santangelo, G. Faggio, G. Messina, E. Fazio, F. Neri, G. Neri, On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices, Sensors Actuators: B Chem. 178 (2013) 473–484.

DOI: 10.1016/j.snb.2013.01.005

Google Scholar

[6] N. Janudin, L. C. Abdullah , N. Abdullah , F. M. Yasin, N. M. Saidi, N. A. M. Kasim, Characterization of Amide and Ester Functionalized Multiwalled Carbon Nanotubes, Asian J. Chem. 30(7) (2018) 1613–1616.

DOI: 10.14233/ajchem.2018.21274

Google Scholar

[7] F. Rigoni, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles, Carbon N. Y. 80(1) (2014) 356–363.

DOI: 10.1016/j.carbon.2014.08.074

Google Scholar

[8] E. Senokos, V. Reguero, J. Palma, J. J. Vilatela, R. Marcilla, Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance, Nanoscale 8(6) (2016) 3620–3628.

DOI: 10.1039/c5nr07697h

Google Scholar

[9] P. Slobodian, P. Riha, P. Cavallo, C. A. Barbero, R. Benlikaya, U. Cvelbar, D. Petras, P. Saha, Highly enhanced vapor sensing of multiwalled carbon nanotube network sensors by n-butylamine functionalization, Journal of Nanomaterials (2014) 1-9.

DOI: 10.1155/2014/589627

Google Scholar

[10] O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes, Sensors Actuators: B Chem. 81(1) (2001) 32–41.

DOI: 10.1016/s0925-4005(01)00923-6

Google Scholar

[11] P. Costa, J. Silva, A. Anson-Casaos, M. T. Martinez, M. J. Abad, J. Viana, S. Lanceros-Mendez, Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications, Compos. Part B: Eng. 61 (2014) 136–146.

DOI: 10.1016/j.compositesb.2014.01.048

Google Scholar

[12] D. Ki-young, C. Jinnil, L. Y. Doo, K. B. Hyun, Y. Youn-Yeol, C. H. Hee, J. Byeong-Kwon, Detection of a CO and NH3 gas gas mixture using carboxylic acid functionalized single-walled carbon nanotubes, Nanoscale Res. Lett. 12(8) (2013) 8–13.

DOI: 10.1186/1556-276x-8-12

Google Scholar

[13] P. Kar, A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors, Sensors Actuators: B Chem. 183 (2013) 25–33.

DOI: 10.1016/j.snb.2013.03.093

Google Scholar

[14] H. Lahlou, R. Leghrib, E. Llobet, X. Vilanova, X. Correig, Development of a gas pre-concentrator based on carbon nanotubes for benzene detection, Procedia Eng. 25 (2011) 239–242.

DOI: 10.1016/j.proeng.2011.12.059

Google Scholar

[15] A. Alam, C. Wan, T. McNally, Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs. wet-chemistry approach, Eur. Polym. J. 87 (2017) 422–448.

DOI: 10.1016/j.eurpolymj.2016.10.004

Google Scholar

[16] S. Gómez, N. M. Rendtorff, E. F. Aglietti, Y. Sakka, G. Suárez, Surface modification of multiwall carbon nanotubes by sulfonitric treatment, Appl. Surf. Sci., 379 (2016) 264–269.

DOI: 10.1016/j.apsusc.2016.04.065

Google Scholar

[17] F. A. Abuilaiwi, T. Laoui, M. Al-Harthi, M. A. Atieh, Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNT) Via Fischer Esterification, Arab. J. Sci. Eng. 35(1C) (2010) 37–48.

Google Scholar

[18] F. V. Ferreira, W. Franceschi, B. R. C. Menezes, F. S. Brito, K. Lozano, A. R. Coutinho, L. S. Cividanes, G. P. Thim, Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites, Appl. Surf. Sci. 410 (2017) 267–277.

DOI: 10.1016/j.apsusc.2017.03.098

Google Scholar