The Effect of Blast Exposure Distance on Hardness and Reduced Modulus Properties of Lead-Free Solder

Article Preview

Abstract:

This study discussed the effect of blast exposure distance of lead-free solder on micromechanical properties. Sn-Ag-Cu solder samples were exposed to 1000 g of Plastic Explosive. The soldered samples were placed at a distance of 1 m, 2 m and 4 m distance from the blast source. In order to study micromechanical properties in localized and more details, the nanoindentation approach was used. The indentation was performed at the center of the solder to examine the hardness and reduced modulus properties. The load-depth curve of indentation for 1 m distance from the blast source has apparent the discontinuity during loading as compared to the control sample. The hardness value increased as the distance from the blast source increased. The shortest distance from the blast source gives a high impact on the degradation of hardness properties as compared to others. This result is important in assessing the effect of exposure distance from the blast source.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

523-528

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yoon, S.B. Jung, Effect of surface finish on interfacial reactions of Cu/Sn-Ag-Cu/Cu (ENIG) sandwich solder joints, J. Alloy. Compd. 448(1-2) (2008) 177-184.

DOI: 10.1016/j.jallcom.2006.10.052

Google Scholar

[2] A. Kroupa, A. Watson, S. Mucklejohn, H. Ipser, A. Dinsdale, D. Andersson, Chapter 5 - Lead-free soldering: Environmentally friendly electronics; in, M. Singh, T. Ohji, R. Asthana (1st Edition), Green and Sustainable Manufacturing of Advanced Material, Elsevier, 2016, pp.101-134.

DOI: 10.1016/b978-0-12-411497-5.00005-9

Google Scholar

[3] A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, I. Ihara, R.G. Fatt, H.R. Madaah-Hosseini, Nanoindentation creep behavior of nanocomposite Sn-Ag-Cu solders, J. Electron. Mater. 41(8) (2012) 2057-2064.

DOI: 10.1007/s11664-012-2086-6

Google Scholar

[4] W.C. Guo, H. Xu, X.Q. Gao, X. L. Hou, Y. Li, A modified method for hardness determination from nanoindentation experiments with imperfect indenters, Adv. Mater. Sci. Eng. (2016) Article ID 9213841.

DOI: 10.1155/2016/9213841

Google Scholar

[5] T.E. Scott, E. Kirkman, M. Haque, I.E. Gibb, P. Mahoney, J.G. Hardman, Primary blast lung injury - a review, Brit. J. Anaesth. 118(3) (2017) 311-6.

DOI: 10.1093/bja/aew385

Google Scholar

[6] T. D. Ngo, P. Mendis, A. Gupta, J. Ramsay, Blast loading and blast effects on structures - an overview, Electron. J. Struct. Eng. 7 (2007) 76-91.

DOI: 10.56748/ejse.671

Google Scholar

[7] W.R. Myung, Y. Kim, K.Y. Kim, S.B. Jung, Drop reliability of epoxy-contained Sn-58 wt% Bi solder joint with ENiG and ENEPIG surface finish under temperature and humidity test, J. Electron. Mater. 45(7) (2016) 3651-3658.

DOI: 10.1007/s11664-016-4517-2

Google Scholar

[8] O.N. Ignatova, I.I. Kaganova, A.N. Malyshev, A.M. Podurets, V.A. Raevskii, V.I. Skokov, M.I. Tkachenko, G.A. Salishchev, T.N. Kon'kova, Effect of shock-wave on the internal structure and mechanical properties of fine-grained copper, Combust. Explos. Shock Waves 46 (2010) 719-723.

DOI: 10.1007/s10573-010-0096-3

Google Scholar

[9] S.N. Kulkov, S.A. Vorozhtsov, V.F. Komarov, V.V. Promakhov, Structure, phase composition and mechanical properties of aluminium alloys produced by shock-wave compaction, Russ. Phys. J. 56(1) (2013) 85-89.

DOI: 10.1007/s11182-013-9999-2

Google Scholar

[10] W.Y.W. Yusoff, N. Ismail, N. Safee, A. Ismail, A. Jalar, M.A. Bakar, Correlation of microstructural evolution and hardness properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under blast wave condition, Solder Surf. Mt. Tech. 31(2) (2019) 102-108.

DOI: 10.1108/ssmt-06-2018-0019

Google Scholar

[11] R. Hajek, M. Foglar, Numerical and experimental analysis of the effect of rigid barriers on blast wave propagation, J. Struct. Eng. 141(12) (2015) 588-601.

DOI: 10.1061/(asce)st.1943-541x.0001308

Google Scholar

[12] Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, Effects of Mn nanoparticles on tensile properties of low-Ag Sn-0.3Ag-0.7Cu-xMn solder alloys and joints, J. Alloys Compd. 719 (2017) 365-375.

DOI: 10.1016/j.jallcom.2017.05.182

Google Scholar

[13] J. Alkorta, J.M. Martinez-Esnola, J.G. Sevillano, Critical examination of strain-rate sensitivity measurement by nanoindentation methods - application severely deformed niobium, Acta Mater. 56 (2008) 884-893.

DOI: 10.1016/j.actamat.2007.10.039

Google Scholar

[14] M.A. Bakar, A. Jalar, A.R. Daud, R. Ismail, N.C.A. Lah, N.S. Ibrahim, Nanoindentation approach on investigating micromechanical properties of joining from green solder materials, Sains Malays. 45(8) (2016) 1275-1279.

Google Scholar

[15] R. Rajendran, J.M. Lee, Blast loaded plates, Mat. Struct. 22 (2009) 99-127.

Google Scholar

[16] E. Liu, T. Zhaner, S. Besold, B. Wunderle, G. Elger, Location resolved transient thermal analysis to investigate crack growth in solder joints, Microelectron. Reliab. 79 (2017) 533-546.

DOI: 10.1016/j.microrel.2017.06.014

Google Scholar

[17] S. Zhang, P.W. Paik, A study on the failure mechanism and enhanced reliability of Sn58Bi solder anisotropic conductive film joints in a pressure cooker test due to polymer viscoelastic properties and hydroswelling, IEEE Trans. Comp. Pack. Man. 6(2) (2016) 216-223.

DOI: 10.1109/tcpmt.2015.2481458

Google Scholar

[18] T.K. Lee, H. Ma, K.C. Liu, J. Xue, Impact of isothermal aging on long-term reliability of fine pitch ball grid array packages with Sn-Ag-Cu solder interconnects: Surface finish effects, J. Electron. Mater. 39(12) (2010) 2564-2573.

DOI: 10.1007/s11664-010-1352-8

Google Scholar

[19] T. An, C. Fang, F. Qin, H. Li, T. Tang, P. Chen, Failure study of Sn37Pb PBGA solder joints using temperature cycling, random vibration and combined temperature cycling and random vibration tests, Microelectron. Reliab. 91 (2018) 213-226.

DOI: 10.1016/j.microrel.2018.10.003

Google Scholar