Tensile, Compressive and Flexural Behaviours of an Aluminium Hybrid Composite

Article Preview

Abstract:

Tensile, compressive and flexural (3-point bending) tests are performed on electromechanical universal testing machine (Zwick/Roell 250kN) to determine mechanical characteristics of an aluminium hybrid composite fabricated through stir casting process at different rates of quasi-static loadings in room temperature 25°C. Influence of heat treatment (annealing) is observed on the material properties. After annealing, the tensile, compressive and flexural strengths decrease while ductility, malleability and bending capability of the composite increase. Bending tests are conducted at different crosshead speeds (1-100mm/min) to study its effects on flexural stresses. It is found that the specimen geometry affects the stress-strain behaviour of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 319)

Pages:

13-17

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. K. Singh, E. Cadoni, M. K. Singha, N. K. Gupta, Dynamic tensile and compressive behaviors of mild steel at wide range of strain rates, Journal of Engineering Mechanics. 139 (2013) 1197-1206.

DOI: 10.1061/(asce)em.1943-7889.0000557

Google Scholar

[2] N. K. Singh, E. Cadoni, M. K. Singha, N. K. Gupta, Dynamic tensile behavior of multi phase high yield strength steel, Materials and Design. 32 (2011) 5091–5098.

DOI: 10.1016/j.matdes.2011.06.027

Google Scholar

[3] N. K. Singh, E. Cadoni, M. K. Singha, N. K. Gupta, Quasi-static and dynamic tensile behavior of CP800 steel, Mechanics of Advanced Materials and Structures. 21 (2014) 531–537.

DOI: 10.1080/15376494.2012.699594

Google Scholar

[4] E. Cadoni, N. K. Singh, M. K. Singha, N. K. Gupta, Strain rate behaviour of multi-phase and complex-phase steels for automotive applications, EPJ Web of Conferences. 26 (2012) 05003.

DOI: 10.1051/epjconf/20122605003

Google Scholar

[5] R. Kumar, N. K. Singh, Modelling and simulation on behaviours of mild steel, vibroengineering Procedia. 29 (2019) 266-269. DOI: https://doi.org/10.21595/vp.2019.21128.

DOI: 10.21595/vp.2019.21128

Google Scholar

[6] R. Kumar, N. K. Singh, Modelling and simulation on behaviours of high strength steels, Materials Today: Proceedings. 2020. DOI: https://doi.org/10.1016/j.matpr.2020.04.636.

Google Scholar

[7] E. Cadoni, M. Dotta, D. Forani, H. Kaufmann, Tensile behaviour of commercial aluminum alloys used in armour applications at high strain rate, Procedia Engineering. 197 (2017) 168-173.

DOI: 10.1016/j.proeng.2017.08.093

Google Scholar

[8] G. Prakash, N. K. Singh, P. Sharma, N. K. Gupta, Tensile, compressive and flexural behaviors of Al5052-H32 in a wide range of strain rates and temperatures, Journal of Materials in Civil Engineering. 32-5 (2020) 04020090.

DOI: 10.1061/(asce)mt.1943-5533.0003154

Google Scholar

[9] G. Prakash, N. K. Singh, N. K. Gupta, Deformation behaviours of Al2014-T6 at different strain rates and temperatures, Structures. 26 (2020) 193–203.

DOI: 10.1016/j.istruc.2020.03.068

Google Scholar

[10] G. prakash, N. K. Singh, D. Kumar, P. Chandel, Dynamic tensile behaviour of magnesium alloy AZ41 at different strain rates and temperatures, U.P.B. Sci. Bull., Series D. 82-1 (2020) 177-186.

Google Scholar

[11] C. Kumar, N. K. Singh, Responses of aluminium alloy pistons under mechanical and thermal loads, Materials Science Forum. 969 (2019) 231-236, DOI: https://doi.org/10.4028/www.scientific.net/MSF.969.231.

DOI: 10.4028/www.scientific.net/msf.969.231

Google Scholar

[12] N. K. Singh, M. K. Singha, E. Cadoni, N. K. Gupta, Strain rate sensitivity of die steel under compressive loads, Advanced Materials Research. 585 (2012) 412-416.

DOI: 10.4028/www.scientific.net/amr.585.412

Google Scholar

[13] R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, High strain rate tensile testing of automotive aluminum alloy sheet, International Journal of Impact Engineering. 32 (2005) 541–560.

DOI: 10.1016/j.ijimpeng.2005.04.013

Google Scholar

[14] G. Prakash, N. K. Singh, N. K. Gupta, Mechanical behaviour of magnesium alloy AZ61 at different strain rates and temperatures under tensile, compressive and flexure loads, Journal of Materials in Civil Engineering. 2020,.

DOI: 10.1061/(asce)mt.1943-5533.0003436

Google Scholar

[15] N. K. Singh, E. Cadoni, M. K. Singha, N. K. Gupta, Mechanical behavior of advanced high strength steel at high strain rates, Applied Mechanics and Materials. 82 (2011) 178-183.

DOI: 10.4028/www.scientific.net/amm.82.178

Google Scholar