Comparison of Methods for Crack Development State for Steel Fibre Reinforced Concrete

Article Preview

Abstract:

Fibre reinforced concrete is a composite material that is increasingly used in construction practice. An often-discussed problem regarding the fibre reinforced concrete is the crack development state and post-cracking behaviour. The paper compares the calculations done according to the Eurocode design and calculations done according to the older procedure given by ČSN standard. The calculations are also compared with the calculations done using the SCIA Engineer software. From the obtained results, the complexity of the calculation, the amount of coefficients, and the variance of value given the current standards is evident.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 322)

Pages:

48-53

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ráček, V., Vodička, J., Krátký, J. (2015). Comparison of MC 2010 and ČSN 73 2452 - steel fibre reinforced concrete classification into the strength classes [online].[cit. 2020-10-07]. https://stavba.tzb-info.cz/beton-malty-omitky/13029-srovnani-mc-2010-a-csn-73-2452-pri-zatrideni-dratkobetonu-do-pevnostni-tridy. (In Czech).

Google Scholar

[2] Krátký, J., Trtík, K., Vodička, J.,Commentary and Examples to Steel Fibre Reinforced Concrete Structures Directive, first ed., Dr. Eduard Grégr a syn, Prague 1999. (In Czech).

Google Scholar

[3] Dlouhý, L., Pouillon, S. (2019). Application of the design code for steel fibre reinforced concrete into finite element software. IOP Conference Series: Materials Science and Engineering. 596:012009.

DOI: 10.1088/1757-899x/596/1/012009

Google Scholar

[4] DAfStb guidelines, 2011: DAfStb-Richtlinie Stahlfaserbeton. Deutscher Ausschuss für Stahlbeton - DAfStb, Berlin, German. (In German).

DOI: 10.1002/best.200900067

Google Scholar

[5] Eurocode 2, Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, CEN, EN 1992-1-1.

Google Scholar

[6] ČSN P 73 2452: Fibre-reinforced concrete - Testing of hardened fibre-reinforced concrete. ÚNMZ, Prague. (2015).

Google Scholar

[7] ČSN 73 1201: Design of concrete structures of buildings. ÚNM Prague, (1988).

Google Scholar

[8] Tipka, M.; Vašková, J., Vodička, J. (2017): Tensile Strength Tests for Concrete and Fibre Reinforced Concrete, In: Proceedings from 24th Concrete Day 2017, Solid State Phenomena. Curich, Switzerland.

DOI: 10.4028/www.scientific.net/ssp.272.94

Google Scholar

[9] RILEM TC 162 - TDF: Test and Design Methods for Steel Fibre Reinforced Concrete, Material and Structures, (2003).

DOI: 10.1617/13628

Google Scholar

[10] fib – International Federation for Structural Concrete: fib - Model Code for Concrete Structures 2010, Ernst & Sohn,. Berlin, (2013).

DOI: 10.1002/9783433604090

Google Scholar

[11] Hulett, T. & Clarke, J.. (2003). Technical report 34 (third edition) - Concrete industrial ground floors: A guide to design and construction.

Google Scholar

[12] ČSN EN 14889 - 1 Fibres for concrete - Part 1: Steel fibres - Definitions, specifications and conformity. ČNI. (2007).

DOI: 10.3403/30110332

Google Scholar

[13] ČSN EN 14889 – 2 Fibres for concrete - Part 2: Polymer fibres - Definitions, specifications and conformity. ČNI. (2007).

DOI: 10.3403/30110335

Google Scholar

[14] ČSN P 73 2450 Fibre-reinforced concrete - Specification, performance, production and conformity. ČNI. (2015).

Google Scholar

[15] ČSN P 73 2451 Fibre-reinforced concrete - Testing of fresh fibre-reinforced concrete. ČNI. (2015).

Google Scholar

[16] ČSN P 73 2452 Fibre-reinforced concrete - Testing of hardened fibre-reinforced concrete. ČNI. (2015).

Google Scholar