[1]
Ibrahim, A. M. S., Jose, R. R., Rabie, A. N., Gerstle, T. L., Lee, B. T., and Lin, S. J., 2015, Three-Dimensional Printing in Developing Countries,, Plast. Reconstr. Surg. - Glob. Open, 3(7), p.1–8.
DOI: 10.1097/gox.0000000000000298
Google Scholar
[2]
Huang, W., and Zhang, X., 2014, 3D Printing: Print the Future of Ophthalmology,, Investig. Ophthalmol. Vis. Sci., 55(8), p.5380–5381.
DOI: 10.1167/iovs.14-15231
Google Scholar
[3]
Hänninen, J., 2002, Direct Metal Laser Sintering,, Adv. Mater. Process., 160(5), p.33–36.
Google Scholar
[4]
Dupláková, D., Hatala, M., Duplák, J., Radchenko, S., and Steranka, J., 2018, Direct Metal Laser Sintering – Possibility of Application in Production Process,, SAR J., 1(4), p.123– 127.
Google Scholar
[5]
Nandy, J., Sarangi, H., and Sahoo, S., 2018, Microstructure Evolution of Al-Si-10Mg in Direct Metal Laser Sintering Using Phase-Field Modeling,, Adv. Manuf., 6(1), p.107–117.
DOI: 10.1007/s40436-018-0213-1
Google Scholar
[6]
Fan, J., Zhu, L., Lu, J., Fu, T., and Chen, A., 2020, Theory of Designing the Gradient Microstructured Metals for Overcoming Strength-Ductility Trade-Off,, Scr. Mater., 184, p.41–45.
DOI: 10.1016/j.scriptamat.2020.03.045
Google Scholar
[7]
Patil, A. S., Hiwarkar, V. D., Verma, P. K., and Khatirkar, R. K., 2019, Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS),, J. Alloys Compd., 777, p.165–173.
DOI: 10.1016/j.jallcom.2018.10.308
Google Scholar
[8]
Attar, H., Bönisch, M., Calin, M., Zhang, L. C., Scudino, S., and Eckert, J., 2014, Selective Laser Melting of in Situ Titanium-Titanium Boride Composites: Processing, Microstructure and Mechanical Properties,, Acta Mater., 76, p.13–22.
DOI: 10.1016/j.actamat.2014.05.022
Google Scholar
[9]
Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O'Donoghue, L., and Charitidis, C., 2018, Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities,, Mater. Today, 21(1), p.22–37.
DOI: 10.1016/j.mattod.2017.07.001
Google Scholar
[10]
Erinosho, M. F., Akinlabi, E. T., and Johnson, O. T., 2018, Characterization of Surface Roughness of Laser Deposited Titanium Alloy and Copper Using AFM,, Appl. Surf. Sci., 435, p.393–397.
DOI: 10.1016/j.apsusc.2017.11.131
Google Scholar
[11]
Shi, X., Qing, W., Marhaba, T., and Zhang, W., 2020, Atomic Force Microscopy - Scanning Electrochemical Microscopy (AFM-SECM) for Nanoscale Topographical and Electrochemical Characterization: Principles, Applications and Perspectives,, Electrochim. Acta, 332, p.135472.
DOI: 10.1016/j.electacta.2019.135472
Google Scholar
[12]
Chen, H., Yao, Y., Warner, J. A., Qu, J., Yun, F., Ye, Z., Ringer, S. P., and Zheng, R., 2017,Grain Size Quantification by Optical Microscopy, Electron Backscatter Diffraction, and Magnetic Force Microscopy,, Micron, 101(May), p.41–47.
DOI: 10.1016/j.micron.2017.06.001
Google Scholar
[13]
Karolewska, K., Ligaj, B., Wirwicki, M., and Szala, G., 2020, Strength Analysis of Ti6Al4V Titanium Alloy Produced by the Use of Additive Manufacturing Method under Static Load Conditions,, J. Mater. Res. Technol., 9(2), p.1365–1379.
DOI: 10.1016/j.jmrt.2019.11.063
Google Scholar
[14]
Asgari, H., and Mohammadi, M., 2018, Microstructure and Mechanical Properties of Stainless Steel CX Manufactured by Direct Metal Laser Sintering,, Mater. Sci. Eng. A, 709(August 2017), p.82–89.
DOI: 10.1016/j.msea.2017.10.045
Google Scholar
[15]
Farber, B., Small, K. A., Allen, C., Causton, R. J., Nichols, A., Simbolick, J., and Taheri, M. L., 2018, Correlation of Mechanical Properties to Microstructure in Metal Laser Sintering Inconel 718,, Mater. Sci. Eng. A, 712(November 2017), p.539–547.
DOI: 10.1016/j.msea.2018.01.071
Google Scholar
[16]
Krakhmalev, P., Fredriksson, G., Yadroitsava, I., Kazantseva, N., Du Plessis, A., and Yadroitsev, I., 2016, Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM,, Phys. Procedia, 83, p.778–788.
DOI: 10.1016/j.phpro.2016.08.080
Google Scholar
[17]
Liu, Y. J., Li, S. J., Wang, H. L., Hou, W. T., Hao, Y. L., Yang, R., Sercombe, T. B., and Zhang, L. C., 2016, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting,, Acta Mater., 113, p.56–67.
DOI: 10.1016/j.actamat.2016.04.029
Google Scholar
[18]
Liu, S., and Shin, Y. C., 2019, Additive Manufacturing of Ti6Al4V Alloy: A Review,, Mater. Des., 164, p.107552.
Google Scholar
[19]
Gu, D., Hagedorn, Y. C., Meiners, W., Meng, G., Batista, R. J. S., Wissenbach, K., and Poprawe, R., 2012, Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium,, Acta Mater., 60(9), p.3849–3860.
DOI: 10.1016/j.actamat.2012.04.006
Google Scholar
[20]
Zhang, L. C., Klemm, D., Eckert, J., Hao, Y. L., and Sercombe, T. B., 2011, Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy,,Scr. Mater., 65(1), p.21–24.
DOI: 10.1016/j.scriptamat.2011.03.024
Google Scholar
[21]
Sterling, A. J., Torries, B., Shamsaei, N., Thompson, S. M., and Seely, D. W., 2016, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V,, Mater. Sci. Eng. A, 655, p.100–112.
DOI: 10.1016/j.msea.2016.01.007
Google Scholar
[22]
Attar, H., Calin, M., Zhang, L. C., Scudino, S., and Eckert, J., 2014, Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium,, Mater. Sci. Eng. A, 593, p.170–177.
DOI: 10.1016/j.msea.2013.11.038
Google Scholar
[23]
Mierzejewska, Z. A., Hudák, R., and Sidun, J., 2019, Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications,, Materials (Basel)., 12(1).
DOI: 10.3390/ma12010176
Google Scholar
[24]
Keshavarzkermani, A., Sadowski, M., and Ladani, L., 2018, Direct Metal Laser Melting of Inconel 718: Process Impact on Grain Formation and Orientation,, J. Alloys Compd., 736, p.297–305.
DOI: 10.1016/j.jallcom.2017.11.130
Google Scholar
[25]
Collins, P. C., Welk, B., Searles, T., Tiley, J., Russ, J. C., and Fraser, H. L., 2009,Development of Methods for the Quantification of Microstructural Features in α + β-Processed α/β Titanium Alloys,, Mater. Sci. Eng. A, 508(1–2), p.174–182.
DOI: 10.1016/j.msea.2008.12.038
Google Scholar
[26]
Tan, X., Kok, Y., Tan, Y. J., Descoins, M., Mangelinck, D., Tor, S. B., Leong, K. F., and Chua, C. K., 2015, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V via Electron Beam Melting,, Acta Mater., 97, p.1–16.
DOI: 10.1016/j.actamat.2015.06.036
Google Scholar
[27]
Rotella, G., Imbrogno, S., Candamano, S., and Umbrello, D., 2018, Surface Integrity of Machined Additively Manufactured Ti Alloys,, J. Mater. Process. Technol., 259(March), p.180–185.
DOI: 10.1016/j.jmatprotec.2018.04.030
Google Scholar
[28]
Koul, S., Zhou, L., Sohn, Y., and Kushima, A., 2018, Microstructure and Mechanical Behavior of the 3D Printed Inconel 718: In-Situ TEM Study,, Microsc. Microanal., 24(S1), p.1942–(1943).
DOI: 10.1017/s143192761801019x
Google Scholar
[29]
Zhang, J., Zhang, Y., Guo, X., Lee, W. H., Hu, B., Lu, Z., Jung, Y.-G., and Lee, J. H., 2016, Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15-5 PH1 Stainless Steel Powders and Components,, TMS 2016 145th Annu. Meet. Exhib. Suppl. Proc., 1, p.13–19.
DOI: 10.1007/978-3-319-48254-5_2
Google Scholar
[30]
Gil, F. J., Ginebra, M. P., Manero, J. M., and Planell, J. A., 2001, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy,, J. Alloys Compd., 329(1–2), p.142–152.
DOI: 10.1016/s0925-8388(01)01571-7
Google Scholar