Using Atomic Force Microscopy to Evaluate Microstructure for Direct Metal Laser Melted Titanium

Article Preview

Abstract:

Additive Manufacturing (AM) is a relatively new technology that could potentially revolutionize industrial manufacturing. Currently, papers have studied the mechanical properties and microstructure of AM materials without the use of Atomic Force Microscopy (AFM). This paper utilizes AFM to analyze the Widmanstätten microstructure and porosity of Direct Metal Laser Melted (DMLM) titanium samples. The mechanical properties of the titanium samples were collected, and the samples exhibited favorable yield and tensile strengths, but suboptimal ductile properties. The DMLM titanium seemed to have an increase in yield and tensile strength while the ductility seemed to decrease as a result of the fast cooling rate utilized in the DMLM process. AFM was used when analyzing the Widmanstätten microstructure which had an average surface roughness of 142 nm and the pore depth of one sample was 3.3 μm. The substantial depth of the pores could potentially be related to the decrease in ductility and it could increase the potential of future premature fractures. AFM provided a lot of useful information for this study and could provide even more information within the metallurgical field when studying the microstructure and porosity of metals, especially for AM materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

26-34

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ibrahim, A. M. S., Jose, R. R., Rabie, A. N., Gerstle, T. L., Lee, B. T., and Lin, S. J., 2015, Three-Dimensional Printing in Developing Countries,, Plast. Reconstr. Surg. - Glob. Open, 3(7), p.1–8.

DOI: 10.1097/gox.0000000000000298

Google Scholar

[2] Huang, W., and Zhang, X., 2014, 3D Printing: Print the Future of Ophthalmology,, Investig. Ophthalmol. Vis. Sci., 55(8), p.5380–5381.

DOI: 10.1167/iovs.14-15231

Google Scholar

[3] Hänninen, J., 2002, Direct Metal Laser Sintering,, Adv. Mater. Process., 160(5), p.33–36.

Google Scholar

[4] Dupláková, D., Hatala, M., Duplák, J., Radchenko, S., and Steranka, J., 2018, Direct Metal Laser Sintering – Possibility of Application in Production Process,, SAR J., 1(4), p.123– 127.

Google Scholar

[5] Nandy, J., Sarangi, H., and Sahoo, S., 2018, Microstructure Evolution of Al-Si-10Mg in Direct Metal Laser Sintering Using Phase-Field Modeling,, Adv. Manuf., 6(1), p.107–117.

DOI: 10.1007/s40436-018-0213-1

Google Scholar

[6] Fan, J., Zhu, L., Lu, J., Fu, T., and Chen, A., 2020, Theory of Designing the Gradient Microstructured Metals for Overcoming Strength-Ductility Trade-Off,, Scr. Mater., 184, p.41–45.

DOI: 10.1016/j.scriptamat.2020.03.045

Google Scholar

[7] Patil, A. S., Hiwarkar, V. D., Verma, P. K., and Khatirkar, R. K., 2019, Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS),, J. Alloys Compd., 777, p.165–173.

DOI: 10.1016/j.jallcom.2018.10.308

Google Scholar

[8] Attar, H., Bönisch, M., Calin, M., Zhang, L. C., Scudino, S., and Eckert, J., 2014, Selective Laser Melting of in Situ Titanium-Titanium Boride Composites: Processing, Microstructure and Mechanical Properties,, Acta Mater., 76, p.13–22.

DOI: 10.1016/j.actamat.2014.05.022

Google Scholar

[9] Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O'Donoghue, L., and Charitidis, C., 2018, Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities,, Mater. Today, 21(1), p.22–37.

DOI: 10.1016/j.mattod.2017.07.001

Google Scholar

[10] Erinosho, M. F., Akinlabi, E. T., and Johnson, O. T., 2018, Characterization of Surface Roughness of Laser Deposited Titanium Alloy and Copper Using AFM,, Appl. Surf. Sci., 435, p.393–397.

DOI: 10.1016/j.apsusc.2017.11.131

Google Scholar

[11] Shi, X., Qing, W., Marhaba, T., and Zhang, W., 2020, Atomic Force Microscopy - Scanning Electrochemical Microscopy (AFM-SECM) for Nanoscale Topographical and Electrochemical Characterization: Principles, Applications and Perspectives,, Electrochim. Acta, 332, p.135472.

DOI: 10.1016/j.electacta.2019.135472

Google Scholar

[12] Chen, H., Yao, Y., Warner, J. A., Qu, J., Yun, F., Ye, Z., Ringer, S. P., and Zheng, R., 2017,Grain Size Quantification by Optical Microscopy, Electron Backscatter Diffraction, and Magnetic Force Microscopy,, Micron, 101(May), p.41–47.

DOI: 10.1016/j.micron.2017.06.001

Google Scholar

[13] Karolewska, K., Ligaj, B., Wirwicki, M., and Szala, G., 2020, Strength Analysis of Ti6Al4V Titanium Alloy Produced by the Use of Additive Manufacturing Method under Static Load Conditions,, J. Mater. Res. Technol., 9(2), p.1365–1379.

DOI: 10.1016/j.jmrt.2019.11.063

Google Scholar

[14] Asgari, H., and Mohammadi, M., 2018, Microstructure and Mechanical Properties of Stainless Steel CX Manufactured by Direct Metal Laser Sintering,, Mater. Sci. Eng. A, 709(August 2017), p.82–89.

DOI: 10.1016/j.msea.2017.10.045

Google Scholar

[15] Farber, B., Small, K. A., Allen, C., Causton, R. J., Nichols, A., Simbolick, J., and Taheri, M. L., 2018, Correlation of Mechanical Properties to Microstructure in Metal Laser Sintering Inconel 718,, Mater. Sci. Eng. A, 712(November 2017), p.539–547.

DOI: 10.1016/j.msea.2018.01.071

Google Scholar

[16] Krakhmalev, P., Fredriksson, G., Yadroitsava, I., Kazantseva, N., Du Plessis, A., and Yadroitsev, I., 2016, Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM,, Phys. Procedia, 83, p.778–788.

DOI: 10.1016/j.phpro.2016.08.080

Google Scholar

[17] Liu, Y. J., Li, S. J., Wang, H. L., Hou, W. T., Hao, Y. L., Yang, R., Sercombe, T. B., and Zhang, L. C., 2016, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting,, Acta Mater., 113, p.56–67.

DOI: 10.1016/j.actamat.2016.04.029

Google Scholar

[18] Liu, S., and Shin, Y. C., 2019, Additive Manufacturing of Ti6Al4V Alloy: A Review,, Mater. Des., 164, p.107552.

Google Scholar

[19] Gu, D., Hagedorn, Y. C., Meiners, W., Meng, G., Batista, R. J. S., Wissenbach, K., and Poprawe, R., 2012, Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium,, Acta Mater., 60(9), p.3849–3860.

DOI: 10.1016/j.actamat.2012.04.006

Google Scholar

[20] Zhang, L. C., Klemm, D., Eckert, J., Hao, Y. L., and Sercombe, T. B., 2011, Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy,,Scr. Mater., 65(1), p.21–24.

DOI: 10.1016/j.scriptamat.2011.03.024

Google Scholar

[21] Sterling, A. J., Torries, B., Shamsaei, N., Thompson, S. M., and Seely, D. W., 2016, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V,, Mater. Sci. Eng. A, 655, p.100–112.

DOI: 10.1016/j.msea.2016.01.007

Google Scholar

[22] Attar, H., Calin, M., Zhang, L. C., Scudino, S., and Eckert, J., 2014, Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium,, Mater. Sci. Eng. A, 593, p.170–177.

DOI: 10.1016/j.msea.2013.11.038

Google Scholar

[23] Mierzejewska, Z. A., Hudák, R., and Sidun, J., 2019, Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications,, Materials (Basel)., 12(1).

DOI: 10.3390/ma12010176

Google Scholar

[24] Keshavarzkermani, A., Sadowski, M., and Ladani, L., 2018, Direct Metal Laser Melting of Inconel 718: Process Impact on Grain Formation and Orientation,, J. Alloys Compd., 736, p.297–305.

DOI: 10.1016/j.jallcom.2017.11.130

Google Scholar

[25] Collins, P. C., Welk, B., Searles, T., Tiley, J., Russ, J. C., and Fraser, H. L., 2009,Development of Methods for the Quantification of Microstructural Features in α + β-Processed α/β Titanium Alloys,, Mater. Sci. Eng. A, 508(1–2), p.174–182.

DOI: 10.1016/j.msea.2008.12.038

Google Scholar

[26] Tan, X., Kok, Y., Tan, Y. J., Descoins, M., Mangelinck, D., Tor, S. B., Leong, K. F., and Chua, C. K., 2015, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V via Electron Beam Melting,, Acta Mater., 97, p.1–16.

DOI: 10.1016/j.actamat.2015.06.036

Google Scholar

[27] Rotella, G., Imbrogno, S., Candamano, S., and Umbrello, D., 2018, Surface Integrity of Machined Additively Manufactured Ti Alloys,, J. Mater. Process. Technol., 259(March), p.180–185.

DOI: 10.1016/j.jmatprotec.2018.04.030

Google Scholar

[28] Koul, S., Zhou, L., Sohn, Y., and Kushima, A., 2018, Microstructure and Mechanical Behavior of the 3D Printed Inconel 718: In-Situ TEM Study,, Microsc. Microanal., 24(S1), p.1942–(1943).

DOI: 10.1017/s143192761801019x

Google Scholar

[29] Zhang, J., Zhang, Y., Guo, X., Lee, W. H., Hu, B., Lu, Z., Jung, Y.-G., and Lee, J. H., 2016, Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15-5 PH1 Stainless Steel Powders and Components,, TMS 2016 145th Annu. Meet. Exhib. Suppl. Proc., 1, p.13–19.

DOI: 10.1007/978-3-319-48254-5_2

Google Scholar

[30] Gil, F. J., Ginebra, M. P., Manero, J. M., and Planell, J. A., 2001, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy,, J. Alloys Compd., 329(1–2), p.142–152.

DOI: 10.1016/s0925-8388(01)01571-7

Google Scholar