Properties of Semisolid Parts: Comparison with Conventional and Innovative Manufacturing Technologies

Article Preview

Abstract:

In this paper, wear properties of samples manufactured using thixocasting were compared with those of components obtained using low-pressure die-casting and additive manufacturing in order to assess the relationship between material performance and production technologies, both conventional and innovative. The investigated items were made with AlSi7Mg alloy. First, microstructural analysis and hardness measurements were carried out. Subsequently, pin-on-disk wear tests were performed. Wear behavior of the samples was studied considering both coefficient of friction and wear rate, while the damage mechanism was analyzed by observation of the worn paths using scanning electron microscope, correlating the behavior to the specific microstructure. In addition, the effect of selected heat-treated conditions, relevant for real applications, on wear properties was also evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

197-206

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.B. Kapranos, D. Midson, S.P. Naher, S. Haga, T., Advanced Casting Methodologies: Inert Environment Vacuum Casting and Solidification, Die Casting, Compocasting, and Roll Casting, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Comprehensive Materials Processing, Elsevier, Oxford, (2014).

DOI: 10.1016/b978-0-08-096532-1.00503-3

Google Scholar

[2] European Aluminium Association, Aluminium Automotive Manual, Manufacturing casting methods.https://www.european-aluminium.eu/media/1526/aam-manufacturing-1-casting-methods.pdf, (accessed 28/04/2021.2021).

Google Scholar

[3] H.V. Atkinson, Modelling the semisolid processing of metallic alloys, Prog. Mater. Sci. 50(3) (2005) 341-412.

Google Scholar

[4] H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Tech. 83(1) (2016) 389-405.

DOI: 10.1007/s00170-015-7576-2

Google Scholar

[5] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Prog. Mater. Sci. 106 (2019) 100578.

DOI: 10.1016/j.pmatsci.2019.100578

Google Scholar

[6] Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review, Mater. Des. 139 (2018) 565-586.

DOI: 10.1016/j.matdes.2017.11.021

Google Scholar

[7] A. Pola, M. Tocci, P. Kapranos, Microstructure and Properties of Semi-Solid Aluminum Alloys: A Literature Review, Metals 8(3) (2018).

DOI: 10.3390/met8030181

Google Scholar

[8] A.R. Anilchandra, L. Arnberg, F. Bonollo, E. Fiorese, G. Timelli, Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review, Materials 10(9) (2017).

DOI: 10.3390/ma10091011

Google Scholar

[9] Y. Birol, F. Birol, Wear properties of high-pressure die cast and thixoformed aluminium alloys for connecting rod applications in compressors, Wear 265(5) (2008) 590-597.

DOI: 10.1016/j.wear.2007.12.004

Google Scholar

[10] L. Lasa, J.M. Rodriguez-Ibabe, Effect of composition and processing route on the wear behaviour of Al–Si alloys, Scr. Mater. 46(6) (2002) 477-481.

DOI: 10.1016/s1359-6462(02)00020-9

Google Scholar

[11] C.H. Hager, A.E. Segall, J.C. Conway, H. Dang, M.F. Amateau, Evaluation of the Reciprocating-Wear Behavior of Unlubricated Hypereutectic Al-Si Alloys, Tribol. Trans. 46(2) (2003) 206-210.

DOI: 10.1080/10402000308982618

Google Scholar

[12] A.K. Dey, P. Poddar, K.K. Singh, K.L. Sahoo, Mechanical and wear properties of rheocast and conventional gravity die cast A356 alloy, Mat. Sci. Eng. A 435-436 (2006) 521-529.

DOI: 10.1016/j.msea.2006.07.148

Google Scholar

[13] M.A. Bayoumi, M.I. Negm, A.M. El-Gohry, Microstructure and mechanical properties of extruded Al–Si alloy (A356) in the semi-solid state, Mater. Des. 30(10) (2009) 4469-4477.

DOI: 10.1016/j.matdes.2008.11.025

Google Scholar

[14] A. Vencl, I. Bobić, Z. Mišković, Effect of thixocasting and heat treatment on the tribological properties of hypoeutectic Al–Si alloy, Wear 264(7) (2008) 616-623.

DOI: 10.1016/j.wear.2007.05.011

Google Scholar

[15] N.V. Thuong, H. Zuhailawati, A.A. Seman, T.D. Huy, B.K. Dhindaw, Microstructural evolution and wear characteristics of equal channel angular pressing processed semi-solid-cast hypoeutectic aluminum alloys, Mater. Des. 67 (2015) 448-456.

DOI: 10.1016/j.matdes.2014.11.054

Google Scholar

[16] D.K. Dwivedi, Adhesive wear behaviour of cast aluminium–silicon alloys: Overview, Mater. Des. (1980-2015) 31(5) (2010) 2517-2531.

DOI: 10.1016/j.matdes.2009.11.038

Google Scholar

[17] R. Casati, M. Vedani, Aging Response of an A357 Al Alloy Processed by Selective Laser Melting, Adv. Eng. Mater. 21(4) (2019) 1800406.

DOI: 10.1002/adem.201800406

Google Scholar

[18] N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet, Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting, Appl. Surf. Sci. 378 (2016) 142-149.

DOI: 10.1016/j.apsusc.2016.03.221

Google Scholar

[19] G. Hirt, R. Kopp, Thixoforming: Semi-solid Metal Processing, Wiley‐VCH Verlag GmbH & Co., (2009).

Google Scholar

[20] W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform 23(6) (2014) 1917-1928.

Google Scholar

[21] J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Mater. 117 (2016) 311-320.

DOI: 10.1016/j.actamat.2016.07.012

Google Scholar

[22] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf. 1-4 (2014) 77-86.

DOI: 10.1016/j.addma.2014.08.001

Google Scholar

[23] L. Girelli, M. Tocci, M. Gelfi, A. Pola, Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy, Mat. Sci. Eng. A 739 (2019) 317-328.

DOI: 10.1016/j.msea.2018.10.026

Google Scholar

[24] C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, J Mater Process Technol. 221 (2015) 112-120.

DOI: 10.1016/j.jmatprotec.2015.02.013

Google Scholar

[25] R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu, Age-hardening behavior of cast Al–Si base alloy, Mater. Lett. 58(15) (2004) 2096-2101.

DOI: 10.1016/j.matlet.2003.12.027

Google Scholar

[26] A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg, Mat. Sci. Eng. A 739 (2019) 295-300.

DOI: 10.1016/j.msea.2018.10.055

Google Scholar

[27] W.H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, J.M. Cairney, Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure, Addit. Manuf. 29 (2019) 100805.

DOI: 10.1016/j.addma.2019.100805

Google Scholar

[28] R. Franke, I. Haase, M. Klemm, R. Zenker, Friction and wear behaviour of electron beam surface treated aluminium alloys AlSi10Mg(Cu) and AlSi35, Wear 269(11) (2010) 921-929.

DOI: 10.1016/j.wear.2010.08.002

Google Scholar

[29] G. Straffelini, A. Molinari, Dry sliding wear of Ti–6Al–4V alloy as influenced by the counterface and sliding conditions, Wear 236(1) (1999) 328-338.

DOI: 10.1016/s0043-1648(99)00292-6

Google Scholar